
USBESAFE: An End-Point Solution to Protect Against USB-Based Attacks

Amin Kharraz†‡ Brandon L. Daley �‡ Graham Z. Baker� William Robertson‡ Engin Kirda‡

�MIT Lincoln Laboratory †University of Illinois at Urbana-Champaign ‡Northeastern University

Abstract
Targeted attacks via transient devices are not new. How-

ever, the introduction of BadUSB attacks has shifted the attack
paradigm tremendously. Such attacks embed malicious code
in device firmware and exploit the lack of access control in
the USB protocol. In this paper, we propose USBESAFE as a
mediator of the USB communication mechanism. By lever-
aging the insights from millions of USB packets, we propose
techniques to generate a protection model that can identify
covert USB attacks by distinguishing BadUSB devices as a
set of novel observations. Our results show that USBESAFE
works well in practice by achieving a true positive [TP] rate
of 95.7% with 0.21% false positives [FP] with latency as low
as three malicious USB packets on USB traffic. We tested
USBESAFE by deploying the model at several end-points for
20 days and running multiple types of BadUSB-style attacks
with different levels of sophistication. Our analysis shows that
USBESAFE can detect a large number of mimicry attacks
without introducing any significant changes to the standard
USB protocol or the underlying systems. The performance
evaluation also shows that USBESAFE is transparent to the
operating system, and imposes no discernible performance
overhead during the enumeration phase or USB communica-
tion compared to the unmodified Linux USB subsystem.

1 Introduction

Transient devices such as USB devices have long been used
as an attack vector. Most of these attacks rely on users who
unwittingly open their organizations to an internal attack. In-
stances of security breaches in recent years illustrate that
adversaries employ such devices to spread malware, take con-
trol of systems, and exfiltrate information.

Most recently, researchers have shown that despite sev-
eral warnings that underscore the risk of malicious periph-
erals, users are still vulnerable to USB attacks [27, 28]. To
tackle this issue, antivirus software is becoming increasingly
adept at scanning USB storage for malware. The software

automatically scans removable devices including USB sticks,
memory cards, external hard drives, and even cameras after
being plugged into a machine. Unfortunately, bypassing such
checks is often not very difficult as the firmware of USB de-
vices cannot be scanned by the host. In fact, the introduction
of BadUSB attacks has shifted the attack paradigm tremen-
dously as adversaries can easily hide their malicious code
in the firmware, allowing the device to take covert actions
on the host [9]. A USB flash drive could register itself as
both a storage device and a Human Interface Device (HID)
such as a keyboard, enabling the ability to inject surreptitious
keystrokes to carry out malice.

Existing defenses against malicious USB devices have re-
sulted in improvements in protecting end-users, but these solu-
tions often require major changes in the current USB protocol
by introducing an access control mechanism [26], modify-
ing the certificate management [20], or changing the user
experience (i.e., a user-defined policy infrastructure) [3, 24].
Our goal is different in a sense that we seek to improve the
security of USB devices while keeping the corresponding
protection mechanism completely in the background. The
immediate benefit of such a solution is flexibility, allowing:
(1) organizations to use standard devices, (2) manufacturers
to avoid changing how their hardware operates, and (3) users
to continue using their current USB devices.

In this paper, we propose USBESAFE, a system to identi-
fying BadUSB-style attacks, which are probably the most
prominent attack that exploits the USB protocol. Our ap-
proach relies upon analyzing how benign devices interact
with the host and the operating system. By leveraging the
insights from millions of USB Request Blocks (URBs) col-
lected over 14 months from a veriety of USB devices such as
keyboards, mouses, headsets, mass storage devices, and cam-
eras, we propose classification techniques that can capture
how a benign USB device interacts with a host by monitoring
URBs as they traverse the bus. Starting with a wide range
of classification features, we carefully analyze the labeled
data and narrow down to three feature categories: content-
based, timing-based, and type-based features. We train several



different machine learning techniques including SVM [14],
Nearest Neighbor [13], and Cluster-based Techniques [12] to
find the most accurate algorithm for building our detection
model. Our analysis showed that One-Class SVM achieved
the highest detection results with a low false positive rate (a
true positive [TP] rate of 95.7% with 0.21% false positives
[FPs]) on the labeled dataset. The constructed model allows
us to identify covert USB attacks by distinguishing BadUSB
devices as novel observations for the trained dataset.

To test USBESAFE, we deployed the constructed model
as a service on end-user machines for 20 days. Our analysis
shows that USBESAFE is successful in identifying several
forms of BadUSB attacks with a low false positive rate on
live, unknown USB traffic. For a real-world deployment, we
also performed a training/re-training analysis to determine
how USBESAFE should be deployed on new machines to
keep the detection rate constantly high with under a 1% false
positive rate. We show that training USBESAFE with as low
as two training days and re-training it every 16 days for 82
seconds are sufficient to maintain the detection rate over 93%
across all the machines.

The most important finding in this paper is practical ev-
idence that shows it is possible to develop models that can
explain the benign data in a very precise fashion. This makes
anomaly detection a promising direction to defend against
BadUSB-style attacks without performing any changes to
the standard USB protocol or underlying systems. We ran
multiple forms of adversarial scenarios to test USBESAFE’s
resilience to evasion with the assumption that adversaries have
significant freedom to generate new forms of BadUSB-style
attacks to evade detection. Our analysis shows that USBE-
SAFE can successfully detect mimicry attacks with different
levels of sophistication without imposing a discernible per-
formance impact or changing the way users interact with the
operating system. We envision multiple potential deployment
models for USBESAFE. Our detection approach can be incor-
porated as a light-weight operating system service to identify
BadUSB attacks and disable the offending port or an early-
warning solution to automatically identify the attacks and
notify system administrators.

2 Background, Threat Model, and Related
Work

A Universal Serial Bus (USB) device can be a peripheral de-
vice such as a Human Interface Device (HID), printer, storage,
or a USB transceiver. An attached USB device can have mul-
tiple functionalities where each functionality is determined by
its interfaces. The host controller interacts independently with
these interfaces by loading a device driver for each interface.
When a USB device is attached, the USB controller in the
host issues a set of control requests to obtain the configuration
parameters of the device in order to activate the supported
configuration. The host parses the configuration, and reads

the device descriptor which contains the information about
the functionality of device. This information allows the host
to load a driver based on the configuration information. This
procedure is called enumeration phase. In the enumeration
phase of the USB protocol, the endpoints are addressed as IN
and OUT to manage the USB traffic. The IN endpoint stores
the data coming to the host, and the OUT endpoint receives
the data from the host. After the enumeration phase, the host
loads the USB interfaces which allow a device to operate.

2.1 Threat Model

In our threat model, we assume that a connecting device can
report any capabilities to the bus, and the host machine trusts
the information that it receives from the device. Similar to
BadUSB attacks [9], an adversary can use this capability by
rewriting the firmware of an existing device to hide malware
in the code that communicates with a host. More specifically,
upon insertion into a host USB port, a mass storage device
– i.e., a USB flash drive (with capabilities for Windows and
Linux) – covertly performs keyboard actions to open a com-
mand prompt, issue a shell command to download malicious
code from the Internet, and execute the downloaded malware.

We should mention that classic USB attacks, for example
using the autorun capabilities of USB devices to distribute
malware, are out of the scope of the paper as these attacks
can be detected by most of malware scanners. Similar to prior
work [24], we try to address the advanced persistent threat
(APT) scenario where an adversary is attempting to expand
its presence in a network by distributing USB devices with
malicious firmware as described above. We assume that the
malicious USB device is capable of generating new device
identities during the enumeration phase by providing varying
responses in each enumeration to evade potential device iden-
tification mechanisms. We also assume that there exists no
USB-level authentication mechanism between the device and
the target host. The OS simply acts on information provided
by the device and will load a driver to accept the USB drive
as, e.g., an HID device. We assume that once the device has
been connected, the adversary can use any technique to ex-
pand her presence. For example, the malicious firmware can
open a command prompt to perform privilege escalation, exfil-
trate files, or copy itself for further propagation. Finally, in this
work, we also assume that the trusted computing base includes
the display module, OS kernel, and underlying software and
hardware stack. Therefore, we consider these components of
the system free of malicious code, and that normal user-based
access control prevents attackers from running malicious code
with superuser privileges.

2.2 Related Work

A wide range of attacks have been introduced via USB in-
cluding malware, data exfiltration on removable storage [8,
16, 17, 22], and tampered device firmware [5, 9]. These cases



show that defending against USB attacks is often not straight-
forward as these attacks can be tailored for many scenarios.
In the remainder of this section, we explore existing solutions
for this class of attack vector and their limitations.

One approach to defend against attacks involving subverted
firmware is to hardwire USB microcontrollers to only allow
firmware updates that are digitally signed by the manufac-
turer. Currently, the de facto technology to protect against
malicious data residing on and executing from a device exists
in IEEE Standard 1667 [20]. The standard seeks to create a
means for bidirectional authentication via an X.509 certificate
infrastructure between hosts and devices. Unfortunately, the
adoption of IEEE 1667 has been slow, and USB devices do
not possess any entity authentication mechanism as a means
of vouching for the safety of data residing on the device.

One of the first research efforts to secure the USB protocol
was conducted by Bates et al. [4,15] where they measured the
timing characteristics during USB enumeration to infer char-
acteristics of host machines. Another class of work focuses
on proposing access control mechanisms on USB storage
devices [6, 19, 23, 30]. While these approaches can lead to
better defense mechanisms, recent studies [21,24] have shown
that these approaches are coarse and cannot distinguish be-
tween desired and undesired usage of a particular interface.
Very recently, Hernandez et al. [7] introduced FirmUSB, a
firmware analysis framework, to examine firmware images
using symbolic analysis techniques. By incorporating the
tool, the authors identified the malicious activity without any
source code analysis while decreasing the analysis time. In
fact, the proposed technique is very effective in addressing
some of the increasing concerns on the trustworthiness and
integrity of USB device firmwares.

One other approach to mitigating such attacks is to mini-
mize the attack surface without changing the fundamentals
of USB communication or patching major operating systems.
Recently, Tian et al. [24] have proposed GoodUSB which
has similar goals to ours. Their approach is based on con-
structing a policy engine that relies on virtualization and a
database that consists of already seen USB devices and report-
ing unknown USB devices to the user. The proposed solution
mediates the enumeration phase, and verifies what the device
claims as its functionality by consulting to a policy engine.
GoodUSB shifts the burden of responsibility to the user to
decide whether a USB device is malicious or benign.

In another work, Tian et al. [26] proposed USBFilter, a
packet-driven access control mechanism for USB, which can
prevent unauthorized interfaces from connecting to the host
operating system. USBFilter traces individual USB packet,
and blocks unauthorized access to the device. Tian et al. [25]
complemented their previous work by introducing ProvUSB
which incorporated provenance-based data forensics and in-
tegrity assurance to defend against USB-based threats. Angel
et al. [3] uses a different approach and leverages virtualiza-
tion to achieve the same goal. We posit that a solution such

as the one described in this paper that introduces as little
change as possible to the user operational status quo is more
likely to prevent exploitation in practice, given that the un-
derlying detection mechanism is reliable. That being said,
these approaches are fundamentally orthogonal and could be
composed to obtain the benefits of both.

3 Overview of The Approach

In this section, we provide more details on USBESAFE com-
ponents and the model we use to detect BadUSB attacks.
Figure 1 shows the pipeline used by USBESAFE to identify
BadUSB-style attacks.

HUB

Root Hub

Host 
Controller

Device Class 
Identifier

Event 
Monitor

Protection
Engine

Notification 
Module

USBeSafe 
Scheduler

Kernel

User

HID device Rogue HID 
Device

1

2
3

4

Figure 1: A high level view of a USBeSafe-enabled machine.

3.1 System Design

The architecture of a USBESAFE-enhanced system requires
interactions among multiple components of the operating
system. In this section, we describe the abstract design of
USBESAFE, independent of the underlying OS. Later, we
will demonstrate how our design can be realized in a proto-
type running on Linux. USBESAFE’s components are mostly
managed by a user space daemon. The daemon includes three
main subsystems as shown in Figure 1: First, a lightweight
user space module that processes transaction flows between
the host and the connected device; second, a detection module
that implements the USB mediator logic; and third, a user
interface that generates alerts and notifies the user. When a
USB device is connected to the host (1), USBESAFE collects
and preprocesses the URBs (2). The protection engine utilizes
the preprocessed data to construct the feature vector, and test
whether the incoming USB packets are in fact new observa-
tions (3). In cases where the system detects a novel sequence
of USB packets, it creates a notification, and sends an alert



to the user (4). In the following, we provide more details on
each proposed module.

3.1.1 USB Event Monitor

The ultimate goal of the event monitor is to analyze URBs
and transform them to an appropriate format that can be used
in the protection engine. To this end, the USB event moni-
tor detects a connected device, and processes the transaction
flows in the form of URBs which contain USB packets during
a USB connection lifecycle from the enumeration, to con-
figured communication, to termination. To store and analyze
USB packets, we implemented a set of data objects. The mod-
ule parses each URB, extracts the USB packet, and generates
a TraceEvent containing the USB header information and
payload. In fact, each TraceEvent is a tuple that contains the
host bus ID as well as the assigned device ID on the bus. Each
TraceEvent, representing a single USB packet, is appended
to a Trace – a list of TraceEvents. USBESAFE generates a
single Trace file for each USB device from the enumeration
to disconnection phase of the connected device. TraceEvents
in each Trace are sorted according to their timestamp, from
earliest to most recent. For each Trace, we identify the de-
vice and configuration descriptor responses, storing them as
auxiliary information for the Trace.

The root of the data structure is called the TraceLibrary
which contains all Traces in the dataset. For each trace in the
TraceLibrary, we sort existing traces into TraceLists which
contain all the traces with the same (busID, deviceID) tuple.
USBESAFE uses the class codes field in the device and in-
terface descriptors to determine the device type and expected
functionality. While USBESAFE has an extensible design,
we focus specifically on USB HIDs including USB keyboard
traffic and the features that characterize such traffic as benign.
This focus stems from our goal which is to determine whether
a covert HID configuration is present and active on a device.

3.1.2 Protection Engine

The protection engine is central to the security model pro-
posed in USBESAFE which decides whether a new, previ-
ously unseen set of USB packets is potentially malicious. In
the following, we explain the features we employed to char-
acterize the USB packets, and train the detection model in
USBESAFE.

Packet Interarrival Times Packet interarrival times char-
acterize the USB keyboard traffic across a bus and, specif-
ically, the timing information of packets. The timing infor-
mation can help reveal user’s typing patterns by serving as a
proxy for inter-keystroke times, or how the bus manages the
URBs of different kinds. Interarrival time values are measured
in milliseconds, between one packet and the next for all the
TraceEvents. Note that a user may enter a keystroke after a
longer pause, ranging from a few seconds to hours. To tackle
the problem of potentially unbounded interarrival time values

in these situations, we explicitly define an upper bound for
the interarrival time value between two interrupt packets. We
explain this procedure and the selection of specific threshold
values in more details in Section 5.

Event Type USBESAFE monitors the value that defines
the type of each USB packet. More precisely, a URB event
type can take two values which indicate whether there is an
onging transaction (URB_SUBMIT (0×53)) or if a transaction
is complete (URB_COMPLETE (0×43)).

Transfer Type USBESAFE also monitors the value of
URB transfer type between the host and the USB de-
vice. The transfer type can take four possible values
which are URB_INTERRUPT, URB_CONTROL, URB_BULK, and
URB_ISOCHRONOUS. This value is selected for a USB device
according to the requirements of the device and the software
which is determined in the endpoint descriptor.

Post-enumeration Time USBESAFE monitors when the
post-enumeration activity starts. For example, in a normal
scenario, a user connects a USB keyboard to the host, and
starts interacting with it. Along with other features, looking
at millions of URBs allows USBESAFE to observe the nor-
mal start of post-enumeration activity of a HID device after
attaching the device to the host. The system incorporates this
feature as a numerical value by calculating the time period
between a successful enumeration and the start of data packet
transfer.

Packet Payload USBESAFE monitors the payload of indi-
vidual USB packets. USBESAFE examines the payload to
determining patterns in data by using a byte histogram to
measure value frequencies within each TraceEvent. The his-
togram represents a space of 256 values ([0,255]) by bucketiz-
ing values into 16 equal intervals or bins. For each TraceEvent,
the system generates a feature vector which contains in-
terarrival_time, event_type, transfer_type, post_enumeration,
data_histogram. The feature vector is then used to construct a
detection model which will be used as an augmented service
in the operating system.

To analyze the URB payloads, we extracted all the n-grams
of EventTraces that appeared in a sliding window of the length
n where the value of n varied from 2 to 4. Each unique se-
quence of length n is added to the detection model for the
USB HID class. The intuition here is that those n-grams are
characteristics of benign USB packets, and any traffic that
does not follow similar patterns compared to the extracted
model for a given user is a novel observation, and with high
likelihood correspond to a new typing pattern. In Section 5.3,
we provide more details on our model searching process since
we should take into account several configuration parame-
ters to achieve the highest detection rate and the lowest false
positive rate.



4 Implementation

In this section, we provide more details on the implementation
of USBESAFE’s prototype which relies on the Linux USB
stack. The implementation of USBESAFE consists of three
independent modules which were discussed in Section 3.1: (1)
a USB event monitor which interposes the bus transactions, (2)
a protection module which constructs the feature vector and
validates whether the incoming USB packets comply with
the generated model, and (3) a notification module which
produces an alert and notifies the user if a novel traffic pattern
is detected. In the following, we provide more details on the
implementation details of each module.

4.1 USB Event Monitor

We used the usbmon Linux kernel module, as a general USB
layer monitor, to capture all the URBs transmitted across the
monitored USB bus. In user space, USBESAFE implements
the transaction flow introspection module by extracting device
information using sysfs, lsusb and device activities using
usbmon and tcpdump. Monitoring the USB devices starts at
the boot time. USBESAFE collects self-reported device infor-
mation as well as actions taken by associated drivers during
the normal usage. The USB event monitor module is a user
space program which is developed in Python. This module is
loaded prior to the device’s enumeration phase by updating
the udev database. We defined a set of datastructure to collect
interface information (e.g., Descriptor Type, Interface Num-
ber, Interface Class and protocol), configuration information
(e.g., max power), and device information (e.g., manufacturer)
for each connected device.

4.2 Protection Engine

As mentioned earlier in Section 3.1, the protection engine
in USBESAFE is responsible for determining whether a set
of USB packets from a connected device to the host are, in
fact, new observations and whether the USB device should
be disabled or not. In cases where the USBESAFE identi-
fies a set of USB packets as new observations, it notifies the
user as well as kernel space components to block the corre-
sponding interface. As the protection engine is the core part
of the USBESAFE, we want to make sure that the model is
constructed based on a suitable algorithm. To this end, we
evaluated multiple machine learning algorithms by measuring
their detection accuracy on the labeled dataset. In Section 5,
we provide more details on the detection accuracy of the al-
gorithms as well as the parameter configurations. The results
of our analyses revealed that one-class SVM [14] achieved
the highest detection rate with a very low false positive rate.
In our detection model, the one-class SVM can be viewed
as a regular two-class SVM where all the training data is be-
nign and lies in the first class, and the unseen data by a large
margin from the hyperplane is taken as the second class. In

fact, the constructed model in USBESAFE solves an optimiza-
tion problem to find a term with maximal geometric margin.
Therefore, if the geometric margin is less than zero, the test
sample is reported as a novel observation. As USBESAFE
has a high privilege, it automatically unbinds the offending
USB port by calling /sys/bus/usb/drivers/usb/unbind
without involving the user.

4.3 Notification Module
The notification module is deployed as a user space dae-
mon which produces alerts whenever the protection mod-
ule identifies a novel observation. We should mention that
there are several design choices for implementing the notifi-
cation module. However, the core requirement of the module
is that the notification should be always stacked on top of the
screen contents, and cannot be obscured, interrupted, or inter-
fered with by other processes. We achieve this by leveraging
libnotify-bin module which is usually used to send desk-
top notifications to users. To prevent the notification module
from being killed programmatically by a potentially mali-
cious process with the same user ID, we recommend creating
another user ID to run the process. Consequently, only root
could kill the process. As the notification module is not the
core part of our contributions, we do not explore the notifica-
tion module further in this paper.

5 Evaluation

To test USBESAFE we conducted two experiments. In the
first experiment, we train and test USBESAFE with a labeled
dataset, and in the second experiment, we test the derived
model on a previously unseen dataset to evaluate the detection
capability of the system in a real-world deployment. Although
our design is sufficiently general to be applied to different
operating systems, we built our prototype for Ubuntu 14.04
LTS with the Linux kernel 3.19. In the following, we first
describe how we created our dataset, and then provide the
details of evaluation and benchmarks.

5.1 Data Collection
In order to create the training dataset, we monitored USB
packet exchanged between a set of devices and five machines.
Each time a USB device was connected, USBESAFE gener-
ated a new trace, named it based on the bus and device ID of
the USB device, and created logs for real-time USB packets
across the monitored USB bus. On the system shutdown, the
module saved the generated trace file to the disk. We sorted
each TraceEvent based on USB device class code which was
extracted from the interface descriptor. The HID class, which
keyboards, mouses, headsets, and game joysticks fall under, is
defined by the class code 3. During 14 months of data collec-
tion, several types of USB devices such as different keyboards,
storage devices, cameras, and headsets were connected to the
machines. We considered a connected USB device as a HID



Machine URBs No. of Traces

Machine1 3,385,445 124
Machine2 2,394,345 90
Machine3 2,884,345 101
Machine4 943,984 50
Machine5 1,620,265 58

Total 11,228,384 423

Table 1: The collected USB Packets over 14 months. We collected
423 HID trace files which contained more than 11 million USB Pack-
ets. The trace files were collected from several types of keyboards,
mouses, headsets. The dataset also includes traces of other USB
devices such as cameras, storage devices which are not HID devices,
but registered themselves as a HID device in addition to their main
driver.

device, if it requested HID driver from the operating system.
For example, we found a benign USB printer that registered
itself both as a printer and a HID device to enable the touch-
screen. Although standard USB printers are not considered as
a HID device, we considered the corresponding traces in the
training phase as the device potentially had the capability to
run commands.

In total, 423 trace files were collected from HID devices,
consisting of 11,228,384 URBs. Note that the actual number
of USB packets that crossed the bus was greater than this value
as any usbmon-based packet actually represented two or three
USB packets on the bus, depending on whether the interaction
included a payload or not. Table 1 illustrates a summary of the
data collected over 14 months from five different machines.

Note that our approach is not an outlier detection method,
but a novelty detection technique. This means that we need
to have a clean training dataset representing the population
of regular observations for building a model and detecting
anomalies in new observations. Therefore, the malicious data
used in our experiments was solely collected for testing pur-
poses. To generate this malicious dataset, we used a Rubber
Ducky USB drive [2], updated the firmware, and generated
a set of scripts that establish covert channels, inject code for
data exfiltration, and connect to a remote server. Such attacks
have several forms, and an adversary has significant freedom
to generate such attacks. For example, it is quite feasible to
write a malicious script that checks an active session and ver-
ifies whether a user is logged in or not before launching an
attack. In Section B, we provide some case studies, and show
how USBESAFE identifies these attacks as a set of novel
observations.

For our experiments, we created eight realistic attack sce-
narios. In each experiment, we connected the device to the
measurement machine and made sure the attack executed
while logging the USB packets from the device enumeration
to device termination. The malicious dataset contains 202,394
USB packets, which was significantly smaller than the benign
dataset, reflecting the expected low base rate of BadUSB-style
attacks.

5.1.1 Preprocessing the Dataset

Over the course of the data collection, we found several un-
predicted situations during the device enumeration phase. For
example, a subset of USB keyboards used in our experiments
were not reported as the USB class code 3, but were instead
reported as the USB class code 0. Though this occurred, each
observed instance of these event sequences yielded a success-
fully enumerated device, and the host accepted the keyboard
input immediately after receiving the device descriptor. For
this reason, we worked around the issue during class bucke-
tization in the feature extraction phase, moving all the class
code 0 traffic into the class code 3 bucket.

Another issue we had to account for in processing the trace
files was to determine what action to take when encounter-
ing malformed packets. In some instances, when the host
requested a device descriptor, the device would respond with
a malformed descriptor packet, forcing the host to make the
request again. For the purposes of prototype evaluation, we
chose to ignore these request/response pairs when they oc-
curred.

5.2 Model Selection

One of the first questions that arises is which machine learning
algorithm achieves the highest detection results if it is trained
with the labeled dataset. To this end, we used five different
algorithms that are known to model anomaly detection prob-
lems. We also considered the local and global features of the
anomaly detection approaches in order to determine whether
the novelty score of an incoming URB should be determined
with respect to the entire training data or solely based on a
subset of previous URBs. To run the experiment, we used
one-class SVM as a classifier-based approach [14], k-NN as a
global Nearest-neighbor [13], and Local Outlier Factor (LOF)
as a local Nearest-neighbor-based approach [13]. We also in-
corporated Cluster-based Local Outlier Factor (CBLOF) [12]
as a global Clustering-based approach and Local Density
Cluster-based Outlier Factor (LDCOF) [12] as a local Clus-
tering-based approach.

To identify the best detection algorithm, we performed an
analysis on the 423 traces we collected from five machines
(see Section 5.1). More specifically, we split the USB traces
of each machine to a training and a testing set using 4-fold
cross-validation, and averaged the value of the detection rate
and false positive rate for each algorithm. As shown in Table
2, the analyses reveal that LDCOF and LOF, which use local
data points, produce lower false positive cases. However, the
empirical evidence suggests that the one-class SVM achieves
the best detection results among the selected algorithms on
the same dataset. Based on our analysis, one likely reason
is that the one-class SVM classifier maps the USB traffic
to a high dimensional feature space more accurately. This
results in producing less false positive cases by identifying
the maximal margin hyperplane that best separates the new



Metric OCSVM k-NN LOF CBLOF LDCOF

TPR 94.2% 90.6% 91.2 92.7% 92.3%
FPR 0.71% 11.3% 5.3% 3.2% 1.9%

Table 2: The detection results of different machine learning
algorithms on the labeled dataset. The analyses show that
one-class SVM achieves the highest TPs with a very low FP
rate on the same dataset.

observations. Based on this empirical analysis, we used the
one-class SVM as our default machine learning algorithm for
the rest of the paper.

5.2.1 Determining the Novelty Score

In the model testing process, USBESAFE applies the trained
decision function to determine whether an input observation
falls within the trained class or outside the trained class. We
consider a URB as a novel observation, if the decision function
assigns the input to the -1 class. In fact, the assigned value -1
implies that the input observation is outside the trained region.
The novelty score is calculated as the ratio of inputs classified
as novel observations over the total number of input observa-
tions. We ran an experiment by incorporating four different
kernel functions to train the one-class SVM (see Appendix
A), and understand what novelty score should be selected as
the threshold at which we decide whether the observation is
novel or not. Our analysis shows that the system produced
less than 1% false positives when the threshold value = 13.2%
was selected for all the four different kernel functions in the
one-class SVM algorithm. In Section 5.3, we describe how
we enhanced the detection model by empirically identifying
a specific set of parameters for the kernel functions.

5.3 Optimizing the Model
Another question that we wanted to answer was whether
we can improve the detection model by changing the re-
quired configuration parameters of the model on the same
labeled dataset. After constructing possible n-grams (see Sec-
tion 3.1.2), we performed a grid search [31] over the parameter
space which consists of: (1) the one-class SVM model param-
eters (e.g., the polynomial degree), (2) the n-gram window
size, and (3) the combinations of detection features.

Based on the resulting parameter space with 105 model
parameter settings, 5 features and n-grams with window size
2 (see Table 6 in Appendix A), we generated 6,510 unique
one-class SVM model instances. To test the accuracy of the
models against BadUSB attacks, we created a set of attacks
using a Rubber Ducky USB drive [2]. The attacks were de-
signed to perform covert HID attacks which open a command
prompt and execute a malicious code, or connect to a remote
server. We elaborate on the malicious dataset later in Sec-
tion 5. For each individual one-class SVM test, we logged the
parameter setting used to generate the model, calculated the
average accuracy across all the 4-fold cross validations, and

Machine No. of Traces TPs FPs

Machine1 124 97.4% 0.16%
Machine2 90 95.6% 0.23%
Machine3 101 96.7% 0.15%
Machine4 50 94.0% 0.31%
Machine5 58 94.3% 0.28%

Per User Model (avg) 423 95.7% 0.21%

General Model 423 94.9% 0.93%

Table 3: The detection results of USBESAFE on different machines.
In this experiment, we used one-class SVM with the polynomial
kernel with degree 3, γ = 0.1 and ν = 0.75 using all the features.
Our analysis shows that per user model is more effective in terms of
producing lower false positive cases.

their corresponding standard deviations. We removed a model
instance from our search space if the false positive rate of
the model was more han 4.0%. Our assumption was that it is
very unlikely that an end-point solution with a false positive
rate more than 4.0% would be useful to be deployed on user
machines. Our analysis shows that USBESAFE achieves the
highest TP and FP rates (TP rate 95.7% at 0.21% FPs) when
one-class SVM uses the polynomial kernel with degree 3,
γ = 0.1 and ν = 0.75 using all the features defined in Sec-
tion 3.1. Table 3 shows the True Positives (TPs) and False
Positives (FPs) for each user machine based on the derived
model. The results show that it is possible to achieve even
a higher detection rate at a lower false positive rate on the
same dataset by tuning the detection model and incorporating
appropriate configuration parameters.

A question that arises is whether a general multi-user model
can achieve the same level of detection accuracy when being
used on several machines. To test this, we incorporated all
the 423 traces in the learning process and tested the detection
results of USBESAFE. We observed that the general model,
unsurprisingly, produced a higher false positive rate on the
labeled dataset. Table 3 summaries the detection accuracy of
USBESAFE in the per user and multi-user scenarios. While
the general model achieved a lower detection rate with a
higher false positive rate, we observed that it can be deployed
temporarily on new machines while the per user model is in
the training phase. We provide more details on the real-world
deployment of USBESAFE in Section 6.
5.3.1 Feature Set Analysis

We also performed an experiment to measure the contribu-
tion of the proposed features by testing the model with the
labeled datasets collected from all the five machines, and cal-
culating the average of TPs and FPs. To this end, we used a
recursive feature elimination (RFE) approach on the labeled
dataset. We divided the feature set into three different cate-
gories: Type-based features which are transfer and event type
of packets (F1), Time-based features which are interarrival
and post-enumeration time of the packets (F2), and Content-
based feature which is the payload of the packets (F3). The



procedure started by incorporating all the feature categories
while measuring the FP and TP rates. Then, in each step, a
feature set with the minimum weight was removed, and the
FP and TP rates were calculated by performing 4-fold cross-
validation to quantify the contribution of each feature in the
proposed feature set. Table 4 provides the details of feature
set evaluation using One-class SVM with the configuration
parameters we tested in Section 5.3.

Our experiments show that the highest false positive rate is
43.4% and is produced when USBESAFE only incorporates
type-based features. When time-based and content-based fea-
tures were used together, USBESAFE achieved (1.8% FP with
94% TP). F23 resulted in higher detection rate as USBESAFE
was able to detect evasive scenarios where we intentionally
imposed an artificial delay, similar to stalling code in mal-
ware attacks, before launching a command injection attack.
When all the features were combined, USBESAFE achieved
(0.21% FP with 95.7% TPs) on labeled dataset. Note that if
USBESAFE uses a larger window size (n= 3), it is possible to
achieve 100% TPs. However, it results in higher false positive
cases as the number of suspicious sequence of USB packets
also increases. Therefore, as a design decision, we decided
to use the window size (n = 2). We provide more details in
Section 5. The results clearly imply that USBESAFE achieves
the highest accuracy by incorporating all the features.

Feature Sets FPs TPs

F1 43.4% 54.7%
F2 14% 78%
F3 16% 69%
F12 2.2% 86.3%
F13 5.6% 65%
F23 1.8% 94%

All Features 0.21% 95.7%

Table 4: The true positive and false positive rate for different com-
binations of features. The analysis shows that USBESAFE achieves
the best results by incorporating all the features.

We performed another experiment to rank the relative con-
tribution of each feature. We first incorporated all the features,
and measured the FP and TP rates. Then, in each step, we
removed the feature with the minimum weight, and calculated
the FP and TP rates to quantify the contribution of each fea-
ture. Table 5 shows the results by ranking all the features with
the most significant one at the top. For easier interpretation,
we calculated the score ratio by dividing the score value of
each feature with the most significant score value. The ratio of
each feature simply tells how much the corresponding feature
can contribute to identify novel observations.
5.3.2 Modeling the USB Traffic Pattern

A question that arises here is how URB arrivals can be mod-
eled. This is an important question as we want to test the
possibility of developing mimicry attacks where an adversary
can bypass the proposed detection mechanism. For example,
an attacker can create BadUSB attacks that generate URBs

Rank Category Feature Type Score Ratio

1 Time Packet Interarrival Times Continuous 100%
2 Content Packet Payload Ordinal 83.2%
3 Time Post-enumeration Time Continuous 35.6%
4 Type Event Type Categorical 14.4%
5 Type Transfer Type Categorical 12.1%

Table 5: The rank of each feature in USBESAFE to detect
novel observations.

which are similar to a normal user typing pattern. Prior work
revealed that user-generated traffic arrivals such as Telnet can
be well modeled as Poisson distribution [18]. To test whether
the URB arrivals follow Poisson distribution, we ran a simple
statistical methodology where we tested whether the URB
arrivals follow exponentially distributed and independent in-
terarrivals – the two requirements for Poisson distribution.

To this end, we randomly selected 100 traces from the la-
beled dataset. Figure 2 represents the results of the analysis.
The x-axis represents the percentage of the intervals in the
traces that follow exponentially distributed interarrivals and
the y-axis represents the percentage of the intervals that fol-
low independent interarrivals. We used Anderson – Darling
test [1] to verify whether the interarrivals follow an exponen-
tial distribution. To test the interarrivals for independence, one
simple way is to check whether there is significant autocorre-
lation among URB arrivals in a given time lag. To this end, we
used Durbin – Watson statistics [29] to test the autocorrelation
among URBs. As shown in the figure, more than 95% of the
intervals pass the test showing that the URB arrivals are truly
Poisson. We use this finding to generate mimicry attacks and
test whether the system can detect attacks that follow Poisson
arrivals (see Appendix B).

70 75 80 85 90 95 100

Exponential Distribution (%)
70

75

80

85

90

95

100

U
nc

or
ro

la
te

d 
Ar

riv
al

s 
(%

)

Randomly Selected Traces

Figure 2: The result of statistical analysis on 100 randomly selected
traces. Our analysis shows that the URB arrivals can be well modeled
by Poisson arrivals.

5.3.3 Determining the Effect of Pause Time

As mentioned in Section 3.1, to tackle the issue of the un-
bounded interarrival time value between two consequent USB



(a) Payload histogram on a 20,000 ms pause
with bin intervals of 200 ms.

(b) Payload histogram on a 40,000 ms pause
with bin intervals of 200 ms.

(c) Payload histogram on a 60,000 ms pause
with bin intervals of 200 ms.

Figure 3: The effect of pause time value on payload histogram. The
figures show localized modality occurs approximately every 4,000
ms with large spikes.

packets, we defined two configuration parameters: pause time
and session. A session is a series of USB packets where the
interarrival time value within the series does not exceed a
specified pause length. To determine the impact of pause time
value, we performed a set of experiments. The experiments
had multiple goals: (1) to empirically characterize the dis-
tribution of the benign interarrival time values; (2) to find
out whether varying the pause time value has any impact on
the volume of information in each session as well as n-gram
construction; and (3) to define the maximum interarrival time
value between two TraceEvents before we consider the user
to be starting a new typing session. To determine an optimal
pause time, we examined three pause time candidates (in mil-
liseconds): 20,000, 40,000, and 60,000 milliseconds, with a
sampling period of 200 and 500 milliseconds. For each pause
time value, we normalized the values for class codes 0 and 3.

More specifically, when a raw interarrival time value i was
greater than the pause time, we reset i to 0, thereby starting a
new session.

We observed some common patterns by generating payload
histograms while varying pause values and interval lengths.
An interesting observation for the HID traffic was that, re-
gardless of the pause time value, a localized modality occurs
approximately every 4000 ms, or 4 seconds, with large spikes
in the number of packets transmitted during these times. Ulti-
mately, the results of this experiment revealed that there was
minimal information payload differences among the pause
time values used, indicating that the value we chose is not
consequential to overall model performance. For this reason,
we set the pause to our lowest value of 20,000 ms. Figure 3
shows the details of this experiment.

0 50 100 150 200

No. of Benign USB Event Traces

0

300000

600000

900000

1200000

N
o.

 o
f U

ni
qu

e 
2-

gr
am

No. of Unique 2-gram

Figure 4: Unique 2-grams for the first 200 USB packet traces in our
dataset. The number of unique sequences significantly decreases as
USBeSafe observes more USB packets.

5.3.4 Determining the Effect of N-Grams

To understand the diversity of the collected USB packets for
the USB HID class, we performed an experiment on construct-
ing n-grams by varying the value of n from 2 to 3. First, we
examined the number of unique 2-grams that can be found in
the first 200 USB trace files which contained 5,938,492 USB
packets. The number of unique 2-grams on labeled dataset
is shown in Figure 4. As depicted, the number of unique se-
quences significantly decreases as USBESAFE observes more
USB packets. The finding suggests that n-grams can closely
capture the characteristics of the benign dataset. That is, if
the model is deployed, it is unlikely that benign keyboard
activities will not have been observed in our training phase,
resulting in low false alarms.

To verify this, we performed an experiment that incorpo-
rated the entire labeled dataset that is a representative mix of
possible BadUSB attacks as well as benign USB HIDs. We
varied n and the threshold k of malicious n-grams that need
to be observed before a USB device is flagged as malicious.
The results for n = 2 and n = 3 and k ranging over an interval



from 1 to 50 are evaluated. Figure 5 shows the results of the
analysis. As depicted, the detection rates are very high, spe-
cially for small values of k. The false positive rate is 0.21%
for k = 3.

0 10 20 30 40 50

Detection Threshold
0

20

40

60

80

100

TP
 v

s 
FP

False Positives (2-grams)
True Positives (2-grams)
False Positive (3-grams)
True Postives (3-grams)

Figure 5: Detection results for 2-grams and 3-grams. The detection
threshold k is on the X-axis (e.g., k = 2 and n = 3 means that a USB
trace must match two 3-grams to generate an alert).

6 Real-world Deployment

The main goal of this experiment is to evaluate the detection
accuracy of USBESAFE by incorporating an unlabeled dataset
which has not been observed during the training phase. We
incorporated the results of our previous measurement on the
labeled datasets by setting the window size and number of
n-grams to established values (n = 2 and k = 3). For a real-
world deployment, we first need to determine how much data
is required for initial model training if a new user decides
to use USBESAFE as a service. To answer this question,
we ran an experiment on seven new machines for 20 days.
Depending on the type of machines and their usage, multiple
HID and non-HID devices were connected to the machines.
This resulted in generating different numbers of trace files per
machine. Therefore, for easier interpretation, we performed
the tests by varying the number of days, referred to as the
training window size, instead of the number of trace files
as five out of seven machines had more than one trace file
per day. We also generated five new BadUSB attacks (e.g.,
establishing covert channels, logging keyboard activity) for
testing.

To run the test, we varied the training window size from 1
to 20 days for all the machines and computed TP and FP rates
to determine the optimal training window size. The result of
this experiment showed that USBESAFE requires two to four
training days to keep the TP rate over 93% with a 0.9% FP
rate in all the machines. Our analysis on the training win-
dow size also showed that the machines with two connected
HID devices (a keyboard and a mouse) do not usually need

more than three training days to reach that level of detection
accuracy.

We ran another experiment to test whether the general
model that was constructed based on our labeled 423 trace
files would work well in the new machines. We observed that
USBESAFE achieved on average 90% TP rate with a 2.2%
FP rate across all the machines. In fact, per user deployment
model achieved a higher detection rate with a significantly
lower false positive rate (FP = 0.9%) at the cost of two to
four training days. However, since the general model does
not require any initial training for a large-scale deployment,
we recommend temporarily activating the general model on a
new machine while USBESAFE is in the training phase.

We also deployed the general model on three multi-user ma-
chines for five consecutive days. We did not receive any com-
plaint from users during the test period. However, we cannot
provide any strong security guarantees to protect multi-user
machines or produce low false positive rate as we do not have
enough data to make any statistically significant claim on the
accuracy of USBESAFE for this deployment option. Further-
more, recall that one of the main design goals of USBESAFE
was to reduce the risk of BadUSB attacks – a form of targeted
attacks on end-users. Consequently, the architecture, feature
selection, and implementation details make USBESAFE a
more effective solution for single user machines. In fact, pro-
tecting multi-user machines has a different set of security and
privacy requirements and is out of the scope of this paper.

6.1 Re-training the Detection Model
USBESAFE should counter the problem of model drift, in
which the constructed model makes an assumption that the
incoming USB packets will exhibit new normal patterns that
have not been observed during the training phase. For ex-
ample, users’ typing patterns can change for various reasons
(e.g., completing a specific task) or URBs interarrival rate
might change across different devices which might affect
the detection accuracy. Therefore, a practical deployment of
USBESAFE requires periodically re-training the system. To
simulate a practical deployment, we started an experiment by
training USBESAFE on all the new machines and tested with
the attack payloads we developed. Our analysis shows that,
based on the labeled dataset and subsequent data collection,
training USBESAFE with an initial dataset similar to ours
and re-training every 16 days were sufficient to maintain the
detection rate over 93% with less than 1% false positive cases
across all the machines.

The re-training process, including the false positive and
false negative analysis, usually took on average 2.1 hours each
time during the course of experiment. More specifically, the
time needed to re-train the model and address model drift was
a function of the size of input data which took approximately
82 seconds on average every 16 days on normal PCs and
laptops. However, the manual intervention for evaluating the
results was almost inevitable. We had to verify how and why



false positive or false negative cases occurred, and whether
they were produced as a result of model drift or an evasive
attack. In a real-world deployment, USBESAFE requires only
the re-training schedule which is less than two minutes. In
Section 7, we provide more details on the risk of adversaries’
malicious influence during the re-training process.

6.2 Evaluating False Positives
During 20 days of experiment, the system processed
3,434,452 USB packets across seven machines. To speed
up the false positive analysis, we asked the users to log the
number of times, the exact time and date they received the
system’s alert. We received false positive reports on two ma-
chines. A more in-depth analysis revealed that all the false
positive cases in one of the machines were produced in two
consecutive days when the user was filling out a set of web
forms with random data for research purposes. USBESAFE
detected these USB packets as new observations because the
payload histograms as well as the interarrival time values
among the URBs were following a significantly different
pattern with the novelty score 32%.

We observed that the false positive cases on the other ma-
chine was because of running a user study experiment in
which several users were asked to run a test on the perceived
functionality of websites by interacting with them while trig-
gering their event listeners. A few users in that experiment
were typing random characters in multiple fields of web forms
in those websites. In fact, the false positive cases in both ma-
chines were very similar in a sense that they were flagged
by USBESAFE when the users performed a set of activities
that did not match with their normal interaction with the ma-
chines. We did not encounter any other cases of legitimate
USB packets being incorrectly reported. These results are in
fact quite encouraging as the experiment was performed on
a set of new machines with relatively small training window
size compared to our first experiment without imposing a
discernible impact on the detection accuracy of USBESAFE.

7 Discussions and Limitations

Note that a fundamental design goals of USBESAFE is to keep
the protection mechanism completely in the background. We
assume that adversaries have significant freedom in provid-
ing varying responses for device identities to evade potential
defense mechanisms. Furthermore, adversaries can convince
users to connect seemingly benign devices to hosts for various
reasons. Consequently, shifting the burden of responsibility to
users to verify the reported identity, and decide on unknown
devices is less likely to be a very reliable defense mechanism.
In this section, we discuss the limitations of USBESAFE, and
the implications of these limitations on the detection results.

First, recall that USBESAFE is an anomaly-based detec-
tion system where the detection results depend on the quality
and volume of the trained dataset. If an attack occurs during
the learning phase, USBESAFE accepts data or behavior that

would otherwise be considered malicious. Therefore, an addi-
tional analysis should be performed on the authenticity of the
new data for re-training purposes to prevent such malicious
influences. This may increase the cost of the data collection
as the proposed model is a per user solution. Furthermore,
as mentioned earlier, an attacker can try to imitate benign
USB traffic patterns and evade the detection mechanism. An
attacker can be successful in running these attacks, if she is
able to accurately learn the typing behavior of the target user.
Our analysis shows that automatically injecting artificial de-
lays (See Appendix B) can decrease the novelty score of USB
traffic. However, it cannot entirely change the traffic patterns,
or possibly adapt to each user typing pattern.

Second, recall that one of the primary design decisions of
USBESAFE is to treat existing operating systems in a black
box fashion, and build a central security model of USBESAFE
independent of the user’s perception of malice. However, US-
BESAFE cannot provide strong protection guarantees against
scenarios where an adversary attempts to trick users into vol-
untarily disabling USBESAFE, for instance, by mimicking
the output of USBESAFE, and forcing the user to disable
protection. We stress that these issues are fundamental to any
host-based protection tool.

Third, USBESAFE cannot provide any security guarantees
in scenarios where an adversary has a privilege to run code
in the kernel. In fact, if an adversary can successfully run
malicious code in the kernel, she can also disable all the pos-
sible defense mechanisms, including USBESAFE. For this
reason, we explicitly consider kernel-level attacks outside the
scope of USBESAFE’s threat model. Despite all the limita-
tions, USBESAFE provides important practical security ben-
efits that complement the standard USB protocol employed
in operating systems without any significant detriments to
performance.

8 Conclusion

In this paper, we empirically show that it is possible to de-
velop models that can accurately explain the the nature of
USB traffic. We presented the design and implementation of
USBESAFE, and demonstrated that it can successfully block
modern BadUSB-style attacks without relying on end-user
security decisions or requiring changes in the current USB
protocol or the operating system. We hope that the concepts
we propose will be useful for end-point protection providers
and facilitate creating similar services on other platforms to
enhance defense mechanisms against future malicious de-
vices.

Acknowledgements

This work was partially supported by the Office of Naval Re-
search (ONR) under grant N00014-19-1-2364 award and the
United States Air Force under Air Force Contract No. FA8702-



15-D-0001. Any opinions, findings, conclusions or recommen-
dations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the United States
Air Force.
DISTRIBUTION STATEMENT A. Approved for public
release. Distribution is unlimited.

References

[1] Anderson–Darling Test. Springer New York, New York,
NY, 2008, pp. 12–14.

[2] USB Rubber Ducky. https://hakshop.com/
products/usb-rubber-ducky-deluxe, 2017.

[3] ANGEL, S., WAHBY, R. S., HOWALD, M., LENERS,
J. B., SPILO, M., SUN, Z., BLUMBERG, A. J., AND
WALFISH, M. Defending against malicious peripherals
with cinch. In USENIX Security Symposium (2016).

[4] BATES, A. M., LEONARD, R., PRUSE, H., LOWD, D.,
AND BUTLER, K. R. B. Leveraging USB to establish
host identity using commodity devices. In 21st Annual
Network and Distributed System Security Symposium,
NDSS 2014, San Diego, California, USA, February 23-
26, 2014 (2014).

[5] BROCKER, M., AND CHECKOWAY, S. iseeyou: dis-
abling the macbook webcam indicator led. In Proceed-
ings of the 23rd USENIX conference on Security Sympo-
sium (2014), USENIX Association, pp. 337–352.

[6] DIWAN, S., PERUMAL, S., AND FATAH, A. Complete
security package for usb thumb drive. Computer Engi-
neering and Intelligent Systems 5, 8 (2014), 30–37.

[7] HERNANDEZ, G., FOWZE, F., YAVUZ, T., BUTLER,
K. R., ET AL. Firmusb: Vetting usb device firmware
using domain informed symbolic execution. ACM Con-
ference on Computer and Communications Security
(2017).

[8] JIM WALTER. “Flame Attacks”: Briefing and Indi-
cators of Compromise. http://downloadcenter.
mcafee.com/products/mcafee-avert/sw/old_
mfe_skywiper_brief_v.1.pdf.zzz, 2012.

[9] KARSTEN NOHL, SACHA KRIBLER, JAKOB LELL.
BadUSB–On accessories that turn evil. BlackHat,
2014.

[10] KHARAZ, A., ARSHAD, S., MULLINER, C., ROBERT-
SON, W., AND KIRDA, E. UNVEIL: A large-scale,
automated approach to detecting ransomware. In 25th
USENIX Security Symposium (USENIX Security 16)
(Austin, TX, 2016), USENIX Association, pp. 757–772.

[11] KOLBITSCH, C., KIRDA, E., AND KRUEGEL, C. The
power of procrastination: Detection and mitigation of
execution-stalling malicious code. In Proceedings of
the 18th ACM Conference on Computer and Communi-
cations Security (New York, NY, USA, 2011), CCS ’11,
ACM, pp. 285–296.

[12] LEARN, S. Anomaly detection with Local Outlier Factor
(LOF). http://scikit-learn.org/stable/auto_
examples/neighbors/plot_lof.html.

[13] LEARN, S. Nearest Neighbors. http://
scikit-learn.org/stable/modules/neighbors.
html.

[14] LEARN, S. One Class SVM. http://scikit-learn.
org/stable/modules/generated/sklearn.svm.
OneClassSVM.html.

[15] LETAW, L., PLETCHER, J., AND BUTLER, K. Host
identification via usb fingerprinting. In Systematic Ap-
proaches to Digital Forensic Engineering (SADFE),
2011 IEEE Sixth International Workshop on (2011),
IEEE, pp. 1–9.

[16] NEUGSCHWANDTNER, M., BEITLER, A., AND KUR-
MUS, A. A transparent defense against usb eavesdrop-
ping attacks. In Proceedings of the 9th European Work-
shop on System Security (2016), ACM, p. 6.

[17] NICOLAS FALLIERE, LIAM O MURCHU, ERIC CHIEN.
W32. Stuxnet Dossier. http://www.bbc.com/news/
technology-36478650, 2011.

[18] PAXSON, V., AND FLOYD, S. Wide area traffic: the
failure of poisson modeling. IEEE/ACM Transactions
on Networking (ToN) 3, 3 (1995), 226–244.

[19] PHAM, D. V., HALGAMUGE, M. N., SYED, A., AND
MENDIS, P. Optimizing windows security features to
block malware and hack tools on usb storage devices.
In Progress in electromagnetics research symposium
(2010), pp. 350–355.

[20] RICH, D. Authentication in transient storage device
attachments. Computer 40, 4 (2007).

[21] SCHUMILO, S., AND SPENNEBERG, R. Don’t trust
your usb! how to find bugs in usb device drivers.

[22] SHIN, S., AND GU, G. Conficker and beyond: a large-
scale empirical study. In Proceedings of the 26th Annual
Computer Security Applications Conference (2010),
ACM, pp. 151–160.

[23] TETMEYER, A., AND SAIEDIAN, H. Security threats
and mitigating risk for usb devices. IEEE Technology
and Society Magazine 29, 4 (2010), 44–49.

https://hakshop.com/products/usb-rubber-ducky-deluxe
https://hakshop.com/products/usb-rubber-ducky-deluxe
http://downloadcenter.mcafee.com/products/mcafee-avert/sw/old_mfe_skywiper_brief_v.1.pdf.zzz
http://downloadcenter.mcafee.com/products/mcafee-avert/sw/old_mfe_skywiper_brief_v.1.pdf.zzz
http://downloadcenter.mcafee.com/products/mcafee-avert/sw/old_mfe_skywiper_brief_v.1.pdf.zzz
BlackHat
http://scikit-learn.org/stable/auto_examples/neighbors/plot_lof.html
http://scikit-learn.org/stable/auto_examples/neighbors/plot_lof.html
http://scikit-learn.org/stable/modules/neighbors.html
http://scikit-learn.org/stable/modules/neighbors.html
http://scikit-learn.org/stable/modules/neighbors.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
http://www.bbc.com/news/technology-36478650
http://www.bbc.com/news/technology-36478650


[24] TIAN, D. J., BATES, A., AND BUTLER, K. Defend-
ing against malicious usb firmware with goodusb. In
Proceedings of the 31st Annual Computer Security Ap-
plications Conference (2015), ACM, pp. 261–270.

[25] TIAN, D. J., BATES, A., BUTLER, K. R., AND RAN-
GASWAMI, R. Provusb: Block-level provenance-based
data protection for usb storage devices. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (2016), CCS ’16, pp. 242–
253.

[26] TIAN, D. J., SCAIFE, N., BATES, A., BUTLER, K.,
AND TRAYNOR, P. Making usb great again with usbfil-
ter. In Proceedings of the USENIX Security Symposium
(2016).

[27] TIAN, J., SCAIFE, N., KUMAR, D., BAILEY, M.,
BATES, A., AND BUTLER, K. Sok: "plug & pray" today
- understanding usb insecurity in versions 1 through c.
In 2018 IEEE Symposium on Security and Privacy (SP),
vol. 00, pp. 613–628.

[28] TISCHER, M., DURUMERIC, Z., FOSTER, S., DUAN,
S., MORI, A., BURSZTEIN, E., AND BAILEY, M. Users
Really Do Plug in USB Drives They Find. In Proceed-
ings of the 37th IEEE Symposium on Security and Pri-
vacy (S&P ’16) (San Jose, California, USA, May 2016).

[29] WATSON, G. S., AND DURBIN, J. Exact tests of serial
correlation using noncircular statistics. The Annals of
Mathematical Statistics (1951), 446–451.

[30] YANG, B., QIN, Y., ZHANG, Y., WANG, W., AND
FENG, D. Tmsui: A trust management scheme of usb
storage devices for industrial control systems. In Interna-
tional Conference on Information and Communications
Security (2015), Springer, pp. 152–168.

[31] ZHUANG, L., AND DAI, H. Parameter optimization of
kernel-based one-class classifier on imbalance learning.
Journal of Computers 1, 7 (2006), 32–40.

A Model Search Configurations

Table 6 represents all the possible configurations for training
the detection model.

Configuration Setting Values #

Error Upper Bound (ν) [0.01, 0.25, 0.5, 0.75, 1] –
Kernel Coefficient (γ) [0.1, 0.01, 0.001, 0.0001] –
Degree of Polynomial [1, 2, 3] –

Kernel Functions

RBF, ν,γ 20
Sigmoid, ν,γ 20
Linear, ν 5
Polynomial, ν,γ, degree 60

Total 105

Table 6: All combinations of parameters for any applicable ν, γ, and
degree settings for each kernel option. Defining this parameter space
results in 105 parameter settings to apply to SVM instances.

B Case Studies

As mentioned earlier, an attacker has significant freedom in
developing malicious code that can potentially bypass USBE-
SAFE. Therefore, as an end-point solution, it is quite useful
to study how the system responds to different levels of attack
sophistication. To this end, we ran each of the following at-
tacks, collected the corresponding USB traces, and measured
the percentage of USB packets in each attack that was novel
to the system based on the model learned on each machine.

Attack No. 1: Running a Malicious Payload By running
a malicious payload, we specifically focus on executing com-
mands to call a binary that downloads code from the Internet,
and installs malware. Note that this attack can be designed to
be as stealthy as possible. For example, the malicious code
can start when the user is logged off with the assumption that
the user is very likely not physically present.

Our analysis showed that this attack had an average novelty
score of 47.9% when tested with different learned models.
Our further investigation revealed that the USB packets re-
ceived a relatively high novelty score compared to the learned
model because the interarrival time values among URBs was

Machine Attack1 Attack2 Attack3

Machine6 63.2% 58.2% 37.3%
Machine7 54.5% 52.5% 42.4%
Machine8 49.8% 40.8% 19.2%
Machine9 31.5% 17.4% 30.8%
Machine10 41.2% 42.8% 30.6%
Machine11 46.5% 47.6% 29.8%
Machine12 49.1% 49.3% 33.6%

Average 47.9% 44.1% 27.1%

Table 7: the novelty score of the evasion tests in the real-
world deployment. The novelty score of all the attacks are
significantly higher than the threshold value (t = 13.2%).



significantly smaller than most of real user typing behaviors.
Furthermore, the 2-gram analysis shows that the average con-
tent histogram of the first 103 request packets were more than
195 during the command injection which was significantly
higher than the content of the USB packets in the benign
dataset.

Attack No. 2: Adding Artificial Delays A question that
arises is that in the previous attack, the malicious code
launched a list of commands immediately after the enumera-
tion phase. We updated the code to wait for a random period
of time similar to the stalling code in malware attacks [10,11],
and then open a terminal to run the commands. Our analysis
revealed that this attack could bypass the post-enumeration
feature by waiting for a random period of time before run-
ning the commands. As shown in Table 7, compared to attack
No. 1, the novelty score of the malicious code decreased in all
the machines. However, USBESAFE reported this attack as a
new observation as the interarrival of the packets was still too
small.

Attack No. 3: Manipulating the Interarrival Times We
enhanced the attack payload to be more stealthy by adding
delays among the injected commands in order to simulate
human typing patterns. The delays were injected such that the
arrivals of URBs followed Poisson distribution. We used Pois-
son distribution as we observed in Section 5 that the URBs’
interarrivals in our labeled dataset can be well-modeled us-
ing Poisson. While the novelty score of the USB traffic in
attack 3 (see Table 7) is relatively lower than the novelty
score of the other attacks, the attack is still detected since
the novelty scores of the USB traffic in all the traces are sig-
nificantly higher than the pre-defined threshold (t = 13.2%).
Further analysis suggests that injecting artificial delays with
Poisson distribution during the command injection phase is
not sufficient to automatically generate very serious mimicry
attacks that perfectly resemble users’ typing patterns. In fact,
we empirically found that to successfully run such attacks,
the adversary needs a more precise mechanism to learn the
normal typing behavior of individual users. This makes craft-
ing mimicry attacks more complicated as the adversary has
to incorporate other techniques to reliably hook certain OS
functions in order to learn the typing pattern of each user.
This particular area has been studied extensively in malware
detection, i.e., spyware detection, and is out of the scope of
this paper.

C Benchmarks

Since USBESAFE is intended as an online monitoring sys-
tem, it may impact the performance of other applications or
the operating system. We expect USBESAFE’s performance
overhead to be overshadowed by I/O processing delays, but

in order to obtain measurable performance indicators and
characterize the overhead of USBESAFE, we ran experiments
that exercised the critical performance paths of USBESAFE.
Note that designing custom test cases and benchmarks require
careful consideration of factors that might influence our run-
time measurements. In these tests, we mainly focused on the
core parts of the USB device communication which were the
USB device enumeration and data transfer mechanisms. We
explain each of these benchmarks in more details below.

Device Enumeration In the first experiment, we tested
whether USBESAFE introduces any noticeable performance
impact during the USB enumeration phase. The testing USB
device was a headset which had a HID interface. We manu-
ally plugged the headset into the host 20 times and compared
the results between USBESAFE-enhanced host and the stan-
dard machine. The average USB enumeration time was 37.4
ms for the standard system and 39.1 ms for the USBESAFE-
enhanced host respectively. Comparing to the standard host,
USBESAFE only introduced 4.5% or less than 2 ms. We cre-
ated the same benchmark using a mouse, and repeated it for
20 times. The system imposed 4.1% or 1.4 ms for device enu-
meration. The measurement results imply that USBESAFE
does not have a significant impact on the enumeration of USB
devices. More details are provided in Table 8.

USB Packet Inspection In the second experiment, we cre-
ated a benchmark to characterize the performance overhead
of our system during a normal device use. To measure the
overhead of the detection model, we plugged in a USB optical
mouse and moved it around to generate USB traffic. We then
measured the time used by USBESAFE to determine whether
the incoming USB packets should be filtered or not. The re-
quired time is calculated from the time a URB is delivered
to the packet inspection subsystem to the time the packet is
analyzed by the protection engine. We tested the experiment
on the first 2,000 URBs, and repeated the experiment 10 times
as shown in Table 8. As shown, the average cost per URB is
12.7 µs, including the time used by the benchmark to get the
timing and print the results.

File System We also created a benchmark to measure the
latency of file operations under the baseline and USBESAFE-
enabled machines. The goal of the experiment is to measure
the performance overhead of the system during normal usage
of a USB storage device, where users plug in flash drives to
copy or edit files. We ran the experiments using a 16 GB USB
flash drive and varied file sizes from 1 KB to 1 GB. Each test
was done 10 times and the average was calculated. As shown,
the throughput of USBESAFE is close to baseline when the
file size is less than 100 MB (approximately 3.9%). When
the mean file size becomes greater than 100 MB, USBESAFE
shows lower throughput compared to the standard machine



Experiment Device Standard USBESAFE Overhead

Enumeration
Head Set 37.4 ms 39.1 ms 4.5%
Mouse 33.5 ms 34.9 ms 4.1%
Keyboard 34.2 ms 35.6 ms 4.2%
Mass Storage 36.6 ms 38 ms 3.9%

Overhead Mean 35.4 ms 36.8 ms 4.2%

Event Inspection Mouse - 12.3 µs -
Keyboard - 13.1 µs -

Overhead Mean
(per packet)

- 12.7 µs -

Table 8: USBESAFE’s overhead on the USB communication
protocol. USBESAFE imposes on average 4.2% overhead
during the enumeration phase and 12.7 µs per packet during
USB packet inspection.

as a result of pattern monitoring on the bus. The results show
that USBESAFE imposes 7.2% and 11.4% overhead when
the mean file sizes are 100 MB and 1 GB respectively. For
example, if a user wants to copy 10 100 MB files, throughput
would drop from 8.9 MB/s to 8.26 MB/s when USBESAFE
is enabled on the user’s machine.


	Introduction
	Background, Threat Model, and Related Work
	Threat Model
	Related Work

	Overview of The Approach
	System Design
	USB Event Monitor
	Protection Engine


	Implementation
	USB Event Monitor
	Protection Engine
	Notification Module

	Evaluation
	Data Collection
	Preprocessing the Dataset

	Model Selection
	Determining the Novelty Score

	Optimizing the Model
	Feature Set Analysis
	Modeling the USB Traffic Pattern
	Determining the Effect of Pause Time
	Determining the Effect of N-Grams


	Real-world Deployment
	Re-training the Detection Model
	Evaluating False Positives

	Discussions and Limitations
	Conclusion
	Model Search Configurations
	Case Studies
	Benchmarks

