
Preventing Server-Side Request Forgery Attacks
Bahruz Jabiyev

Northeastern University
bahruz@ccs.neu.edu

Omid Mirzaei
Northeastern University

o.mirzaei@northeastern.edu

Amin Kharraz
Florida International University

ak@cs.fiu.edu

Engin Kirda
Northeastern University

ek@ccs.neu.edu

ABSTRACT
In today’s web, it is not uncommon for web applications to take a
complete URL as input from users. Usually, once the web application
receives a URL, the server opens a connection to it. However, if
the URL points to an internal service and the server still makes the
connection, the server becomes vulnerable to Server-Side Request
Forgery (SSRF) attacks. These attacks can be highly destructive
when they exploit internal services. They are equally destructive
and needmuch less effort to succeed if the server is hosted in a cloud
environment. Therefore, with the growing use of cloud computing,
the threat of SSRF attacks is becoming more serious.

In this paper, we present a novel defense approach to protect
internal services from SSRF attacks. Our analysis of more than 60
SSRF vulnerability reports shows that developers’ awareness about
this vulnerability is generally limited. Therefore, coders usually
have flaws in their defenses. Even when these defenses have no
flaws, they are usually still affected by important security and
functionality limitations. In this work, we develop a prototype
based on the proposed approach by extending the functionality of
a popular reverse proxy application and deploy a set of vulnerable
web applications with that prototype. We demonstrate how SSRF
attacks on these applications, with almost no loss of performance,
are prevented.
ACM Reference Format:
Bahruz Jabiyev, Omid Mirzaei, Amin Kharraz, and Engin Kirda. 2021. Pre-
venting Server-Side Request Forgery Attacks. In The 36th ACM/SIGAPP
Symposium on Applied Computing (SAC ’21), March 22–26, 2021, Virtual
Event, Republic of Korea. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3412841.3442036

1 INTRODUCTION
Web applications have been always an attractive attack vector for
adversaries. These applications are often open to the public-facing
Internet and are commonly used to handle critical tasks and valuable
data. Despite much attention to web applications in the security
community, there has been little investigation into attacks on the
trust relationship between web applications and critical services

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8104-8/21/03. . . $15.00
https://doi.org/10.1145/3412841.3442036

inside a target network. These attacks are often severe [35] and
can render almost all of the contemporary security mechanisms
ineffective.

In this work, we primarily focus on Server-Side Request Forgery
(SSRF) attacks where the vulnerable web application redirects the at-
tacker’s requests to the internal network and exposes local services
to the remote attacker, introducing different forms of risks [17]. The
goal of this work is to reduce the risk of such crippling attacks by
proposing a systematic framework that handles untrusted incoming
requests without imposing a discernible performance impact or
changing the underlying logic of web applications.

SSRF attacks can exploit internal services in different ways, from
having them send spam emails [29, 36] to executing operating
system commands remotely on servers that are running web appli-
cations [22, 44]. Specifically, if the vulnerable server (i.e., the server
which runs the vulnerable web application) is hosted in a cloud
environment, SSRF attacks take less effort for attackers and are
usually more dangerous [23, 35]. One such attack happened less
than a year ago against Capital One where more than 100 million
consumer credit applications were stolen [35].

Mitigating SSRF vulnerabilities can be a non-trivial task. These
issues can originate at different layers of the software stack (e.g.,
at the application level or a third-party library), making it very
difficult to locate the vulnerable code. In fact, specific validations
can take place for obvious forms of SSRF. However, it is possible to
miss less obvious cases specifically due to transparency issues in
third-party library usage in modern web applications.

In this paper, we begin by investigating the attack landscape
and perform a manual analysis of 61 HackerOne SSRF vulnerability
reports from 2014 to 2019. To choose these reports, we take the top
100 pages listed by Google from the total 163 HackerOne report
pages which were indexed by the time of the search (i.e., September,
2019). However, only 61 of them contain enough information about
how the attack was carried out; the rest has little informationmostly
due to limited disclosure by companies.

Our analysis reveals twomain challenges for application develop-
ers. First, SSRF is an under-studied problem. Developers’ awareness
about the SSRF vulnerability is limited, and this lack of knowledge
usually leads to incomplete defense mechanisms where adversaries’
capabilities are underestimated. Second, it is not always obvious
where the attack payload is delivered in (e.g., inserted in an up-
loaded file). Furthermore, our study shows that even when existing
defense mechanisms are properly implemented by developers, they
still suffer from important security and functionality limitations.

Two fundamental conditions underlie SSRF vulnerabilities: 1)
based on a user input, the web application server makes a request,

https://doi.org/10.1145/3412841.3442036
https://doi.org/10.1145/3412841.3442036
https://doi.org/10.1145/3412841.3442036

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Bahruz Jabiyev, Omid Mirzaei, Amin Kharraz, and Engin Kirda

and 2) the web application server has network access to internal
services, commonly required for its normal functioning. In light
of these conditions, we propose a defense approach which incor-
porates two main principles: 1) the web application server itself
does not fetch any external resources and delegates this task to a
helper server, and 2) the helper server has no network access to
surrounding internal services and has the sole function of retrieving
resources for the web application server.

We develop a prototype of our defense approach to evaluate its
effectiveness. To do this, we extend the functionality of a popular
reverse proxy application to support three main operations. First of
all, it can recognize a URL in an incoming HTTP request. Second, it
can modify the URL in a way so that it points to the helper server
while preserving the original value of the URL. Finally, it can relay
the modified request to the web application.

As a result, when the web application invokes the modified URL,
a request containing the original URL of the resource is sent to the
helper server. In response, the helper server fetches the resource at
the original URL from the Internet and serves it back to the web
application server. The helper server is given the minimum network
access required to fetch resources from the Internet and is blocked
from accessing internal services by firewall rules.

To evaluate our prototype, we use the OWASP Vulnerable Web
Applications Directory (VWAD) Project [38]. This directory is a
listing of web applications purposefully made vulnerable for ed-
ucational means. We deploy them with the developed prototype
and conduct experiments to examine our defense solution from
three different angles. First, we assess how well it protects against
SSRF attacks. Second, we investigate how much performance loss is
imposed on web applications, and finally, we analyze if this defense
solution can be evaded. We explain possible evasion methods for
different implementation styles separately. We also discuss how
these evasion methods can be addressed.

We hope that this work serves to raise awareness about the im-
portance of defining reliable trust models in server-side security.We
also hope our approach will prove useful to the web security com-
munity to tackle similar challenges that lie ahead in this dynamic
landscape.
Contributions. In summary, we make the following main contri-
butions:

• We systematically present different types of SSRF attacks
along with their consequences. Also, we present defense
mechanisms against these attacks and how attackers can po-
tentially bypass them. We do all these by manually analyzing
more than 60 HackerOne SSRF vulnerability reports.

• We introduce a novel SSRF defense approach which can be
adopted in web applications.

• We develop a prototype of our method by extending the
functionality of a popular reverse proxy application to vali-
date the success of the proposed solution. We also share the
extension code and other relevant artifacts to foster research
in this area [10].

2 BACKGROUND
Our analysis of more than 60 SSRF reports on HackerOne [2] sug-
gests that SSRF attacks are delivered in multiple ways, and they

might have various consequences, depending on the the environ-
ment where the server is hosted.

2.1 Types of SSRF Attacks
SSRF attacks are divided into two types: in-band and out-of-band.
In the following sections, we describe each category and their
differences.

2.1.1 In-band. The SSRF attack is known as in-band when the
attack payload is delivered in the same channel as HTTP messages
between a client and a server. In other words, attack payloads are
inserted in requests sent to the server. Listing 1 shows an example
where an attack payload is sent in place of a URL that is supposed
to be used to fetch a user’s profile photo. This attack payload makes
the server send data to a service running on port 123 on host
127.0.0.1 that is supposed to be unreachable to the attacker from
outside of the firewall.

POST /profile/photo/upload HTTP/1.1
Host: foo.com
Content-Length: 37

image_url=http://127.0.0.1:123/data

Listing 1: The payload is delivered in the body of a request.

2.1.2 Out-of-band (OOB). The attack is called out-of-band when
an attacker sends to a victim server a pointer to an attack payload.
Once the pointer is referenced by the server, the attack payload
gets delivered. In the example shown in Listing 2, when the web
application processes the request (left), it finds a reference to an
external file (right). Then, that external file is loaded and the attack
payload is delivered. As a result, an internal service is exposed to
an attacker-provided input.

This example also illustrates how an XXE (External XML Entity)
vulnerability [20] can be used for an SSRF attack. XXE causes an
SSRF attack when an XML parser substitutes an external entity in
XML with its value and this value is a URL. In fact, XXE can cause
both in-band and out-of-band SSRF attacks.

POST / HTTP/1.1
Host: foo.com

<?xml version="1.0"?>
<!DOCTYPE user [

<!ENTITY % dtd SYSTEM
'http://evil.com/e.dtd'>
%dtd;

]>
<user>&send;</user>

<!--

Content of e.dtd
on evil.com

-->

<!ENTITY send SYSTEM
'http://127.0.0.1:123/data'
>

Listing 2: The request (left) contains a reference to an external file
(right). The attack payload (right bottom) is delivered when the ex-
ternal file is loaded.

Preventing Server-Side Request Forgery Attacks SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

2.2 Consequences of SSRF attacks
Targeted victim servers can be hosted either in a cloud environment
or within the physical confines of an enterprise. Each of these
environments may bring about different consequences in SSRF
attacks that we discuss below.

2.2.1 Cloud Environment. Web applications in the cloud run on
instances (i.e., virtual servers). Every instance stores its metadata
on a metadata server and makes it available through the metadata
service. This service is required by scripts running on an instance to
access its information, such as the IP address and hostname [15, 18].
In addition, the metadata service can be queried for the access
credentials of an instance, and usually these queries require no
authentication and authorization. As long as queries are made from
within the instance, they will be served.

Therefore, when attackers discover that the vulnerable web ap-
plication is running in the cloud, they take advantage of the SSRF
vulnerability and forge requests from the application to the meta-
data service to steal the access credentials (of the instance hosting
the application). Stolen access credentials let the attackers access
services and resources under the permissions of those credentials.
In fact, this is how the Capital One attacker obtained access to
storage services, and from there to credit applications of more than
100 million customers [35]. In another attack [23], the attackers ex-
ploited an SSRF vulnerability and used the metadata service to steal
the credentials of a Kubernetes (container orchestration) service
and gain root access to all containers.

To address this issue, major cloud providers have introduced new
versions to enforce specific headers in metadata service requests [8,
18]. However, as long as the previous versions are supported, the
endpoints continue to be vulnerable as they were in the case of the
Shopify attack [23].

2.2.2 On-premise Environment. When a web application is hosted
in-house or within the physical confines of an enterprise, several
services are usually running both on the application server itself
and other servers in the internal network. Most of these services are
usually not accessible from outside the firewall for security reasons.
However, if the web application has an SSRF vulnerability, this will
let an attacker forge requests from the application to all internal
services that can be accessed from the application (or the server).

In order to exploit an internal service, the attacker should devise
the payload in a way that the service can understand and process.
This might be a challenge for SSRF attacks because they usually
happen over an HTTP channel and not every service can speak
HTTP. Even so, attackers are still able to succeed using different
techniques for different types of services.

Some types of services can speak HTTP natively, and therefore,
they do not require any specific technique. In fact, popular services
(e.g., Elasticsearch, CouchDB) might come with a REST API that
allows interacting with them in HTTP. Obviously, internal web
applications are also of this type as they are served over HTTP.
Moreover, as these web applications are only for internal use, they
might lack the same level of protection as the ones that are open to
public use.

Services that do not support the HTTP protocol can still accept
HTTP inputs. This is because these services might not require in-
puts to be perfectly formed, and they can easily disregard irrelevant
parts of inputs. Attackers take advantage of this by positioning an
attack payload right after the HTTP part ends and have the server
process the payload. In fact, this is how attackers exploited Mem-
cached and Redis services to execute operating system commands
remotely [21, 44].

3 EXISTING DEFENSE MECHANISMS
Our analyses of academic literature, security guidelines and vulner-
ability reports suggest that protection solutions and measures for
SSRF attacks are limited to validation checks written by application
developers in the application code. They often suffer from flaws,
and even when they are flawless, they have important limitations.

3.1 Common Flaws and Bypasses
In this section, we discuss common mistakes developers usually
make in defending against server-side request forgery attacks and
how attackers can leverage these flaws to bypass the defense.

3.1.1 Incomplete Blacklisting. The simplest solution used by devel-
opers to defend against SSRF attacks is blacklisting. In this method,
the host part of the user-provided URL is matched against a blacklist
(see line 5 in Listing 3) to ensure that it does not point to an internal
service. If a match is found, the request is rejected by the protection
mechanism. This defense solution is bypassed by using different
encoding schemes (e.g., decimal-encoded version of 127.0.0.1 is
2130706433) and IPv6, as released publicly in multiple vulnerability
reports [27, 28].

1 def is_allowed(url):
2 # url = 'http://127.0.0.1:123/data'
3 host = url.split('/')[2].split(':')[0]
4 # host = '127.0.0.1'
5 prefixes = ['192.168.', '172.', '10.', '127.', '0.',

'169.254.']↩→

6 for prefix in prefixes:
7 if host.startswith(prefix):
8 return False
9 return True

Listing 3: The host part is matched against a blacklist.

3.1.2 DNS Pinning. To avoid the limitations of blacklisting, some
developers rely on libraries (see lines 1 and 7 in Listing 4) to disallow
a URL which has a private IP address as its host component. How-
ever, this solution is not resilient against DNS pinning. As many
vulnerability reports show [36, 45], an attacker can use a hostname
that resolves to a private IP (e.g., http://localtest.me:123/data
where localtest.me resolves to 127.0.0.1) to bypass the defense.

3.1.3 HTTP Redirection. As a response to DNS pinning, developers
can check if the host component of a URL resolves to a private IP
address by making a DNS query. However, this solution does not
protect from HTTP redirection bypass. In this bypass method, an

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Bahruz Jabiyev, Omid Mirzaei, Amin Kharraz, and Engin Kirda

1 import ipaddress
2

3 def is_allowed(url):
4 # url = 'http://127.0.0.1:123/data'
5 host = url.split('/')[2].split(':')[0]
6 # host = '127.0.0.1'
7 return not ipaddress.ip_address(host).is_private

Listing 4: A library function is used to check if the host part is a
private IP address.

attacker inputs a URL pointing to a page on a server she controls.
As this server has a public IP address, the check shown in Listing 5
passes, and the page is visited. This page, in turn, redirects the
vulnerable server to make a request to an internal service (see an
example in Listing 6). We came across this bypass method in several
vulnerability reports [29, 36].

1 import socket
2 import ipaddress
3

4 def is_allowed(url):
5 # url = 'http://127.0.0.1:123/data'
6 host = url.split('/')[2].split(':')[0]
7 # host = '127.0.0.1'
8 ip = socket.gethostbyname(host)
9 return not ipaddress.ip_address(ip).is_private

Listing 5: The check is performed after the DNS query.

1 <?php
2 header('Location: http://127.0.0.1:123/data');
3 ?>

Listing 6: PHP code on an attacker-controlled server.

3.1.4 Time of Check to Time of Use (TOCTOU). To prevent HTTP
redirection bypass, developers disable redirection in requests made
from the application to the Internet. Nevertheless, the application
might still be affected by a TOCTOU vulnerability. Two DNS re-
quests are made commonly before an HTTP request is made to a
target URL: 1) to check whether the host part of the URL points
to a private IP address, and 2) to resolve the hostname of the URL
to be able to start a connection to the target server. Attackers take
advantage of this by providing a URL pointing to their own server
and have their DNS server serve two different DNS responses: 1) a
public IP address to pass the first check, and 2) a private IP address
to achieve a request forgery to an internal service. At least one
SSRF vulnerability report [24] documents such an attack.

3.2 Fundamental Pillars of Defense
Mechanisms

Our analyses show that current defensemechanisms are constructed
at the code level, and they are expected to meet at least these four

requirements: 1) a DNS check is performed on the host part of an
input URL to see whether or not an internal service is pointed to,
2) well-tested libraries are used to verify that a given IP address
is not private, even in the presence of a disguise, 3) redirection in
HTTP requests made from the application is disabled, and 4) the
second DNS check is abandoned in favor of using the result of the
first check to start the connection.

3.3 Important Limitations
While application developers could apply all these fundamental
requirements to build a defense, it would still suffer from important
security and functionality limitations.

3.3.1 Security Limitations. The discussed requirements that form
the basis of current defense mechanisms do not provide complete
protection from SSRF attacks. As they mainly consist of program-
matic checks, it is assumed that the subject of these checks is given.
However, this assumption is not valid when an attack payload is
delivered in a way that is unexpected for a developer. In that case,
the developer fails to receive it and to perform the required checks.
This happens in at least two cases: 1) the payload is delivered in
an unexpected part of a request (e.g., inserted in an uploaded file),
and 2) the payload is delivered in a different channel (i.e., out-of-
band SSRF). In fact, our analysis of vulnerability reports shows that
these cases account for 20% of SSRF attacks documented in the
reports [31, 41].

3.3.2 Functionality Limitations. To prevent the HTTP redirection
bypass method, developers are forced to disable redirection in re-
quests made to fetch resources. However, disabling redirection
while fetching resources would render moved resources to be un-
reachable. Given the fact that resources are often moved either
temporarily or permanently on the Internet, tension might arise
between security and functionality.

4 PROPOSED APPROACH
The high-level architecture of the proposed defense solution against
SSRF attacks is provided in Figure 1. In the first step, a reverse proxy,
positioned in front of a web application server, examines all requests
coming from clients before they reach a web application. When
the reverse proxy finds a URL in the request body or in the request
URI, it modifies the URL and relays the modified request to the web
application server. Then, when the web application invokes the
modified URL, a request is sent to a helper server with the original
value of the URL contained in the request. An HTTP service (which
we refer to as the "helper service" in the remainder of the paper)
running on the helper server receives the original URL and fetches
the resource hosted at that URL, and then passes it back to the web
application. As the helper server has no access to services running
in the internal network, all internal services are left untouched,
even if the original value of the URL (i.e., the user-provided value)
is manipulated. We provide more information about each step in
the remainder of this section.

4.1 Request Modification
The reverse proxy, sitting in front of the web application server, is
able to intercept all requests coming from clients and going to the

Preventing Server-Side Request Forgery Attacks SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

Web
ApplicationReverse ProxyClient Helper Server

POST / HTTP/1.1
Host: foo.com

url=http://bar.com/content

POST / HTTP/1.1
Host: foo.com

url=http://helperserver/?u=http://bar.com/content

1 2

GET /?u=http://bar.com/content HTTP/1.1
Host: helperserver

GET /content HTTP/1.1
Host: bar.com

HTTP/1.1 200 OK

3

4
5

678

Internet
(bar.com)

HTTP/1.1 200 OKHTTP/1.1 200 OKHTTP/1.1 200 OK

Figure 1: Overall architecture of the proposed defense solution. The reverse proxy modifies the request (step 2) so that the web application
itself does not directly fetch resources from the Internet. Instead, it delegates the function of fetching resources to helper server (step 4).

web application. In addition, it has the ability to inspect and modify
the requests.

4.1.1 Inspection and Search. An incoming request (step 1 in Fig-
ure 1) is intercepted and examined to determine whether or not any
URL information is being sent. More specifically, the request body
and URI are searched for a URL pattern. In Section 6, we discuss
how successful this pattern matching is in the recognition of attack
payloads.

4.1.2 Modification and Retransmission. Once a URL is found either
in the request body or the request URI, it is modified. In Figure 1,
the request sent in Step 2 has the modified version of the URL sent
in the request sent in Step 1. However, when the URL is modified,
the original value is retained. This is to make sure that the helper
service will be able to fetch (step 4 in Figure 1) the resource hosted
at the initial value of the URL and pass it back to the web application
server.

The URL modification ensures that the initial (and possibly ma-
nipulated) value of the URL is handled by the helper server. There-
fore, if the initial value of the URL is malicious, only the helper
server is exposed, and therefore, the web application server is kept
safe. Once the modification is done, the request is retransmitted
(step 2 in Figure 1) to the web application server. As a result, only
the modified URLs reach the application.

4.1.3 Page and Parameter Exclusion. URLs transmitted in requests
are not always used for fetching resources. For example, it can deter-
mine the page a client will be redirected to. We see another example
in "contact us" pages, where website URL information is sometimes
asked. Therefore, modifying URLs can affect the functionality of
the application in these cases. These cases can be handled in two
different ways: 1) excluding pages and parameters from the modifi-
cation on the reverse proxy and 2) discarding the prepended part
in the application code.

However, these exclusions (especially for pages) might open a
hole in the defense. Therefore, we recommend converting URLs
back to their initial states in the application code by trimming the
prepended part. For instance, when a URL is to be returned to a

user, the conversion can be done right before returning it, to make
sure that this URL did not cause any harm in case it was invoked
earlier.

4.2 Resource Fetching
The web application server delegates the process of fetching re-
sources from the Internet to a helper server. The helper server
is an isolated server with no access to internal services. When it
fetches resources, it keeps track of content types to avoid potential
processing errors.

4.2.1 Isolation. The helper server needs minimal access in the
internal network to perform its function. Every time a resource is
fetched, the helper server needs to make outgoing connections only
to the web application server on a temporarily opened port. As that
port is open only during the connection and does not belong to any
service, it does not pose any threat.

Except for theweb application server, the helper server is blocked
from accessing other internal IP addresses by firewall rules. In
addition, the list of all services running on the application server is
obtained and any access to them is blocked.

4.2.2 Connecting to the Internet. While the helper server is isolated
from internal services, the helper service running on it is capable of
connecting to servers on the Internet and fetching resources from
them. This service receives the URL of a resource in the request
from the web application server (step 3 in Figure 1) and opens a
connection to that URL to retrieve the hosted resource. Once the
resource is retrieved (step 5 in Figure 1), it is passed back to the
web application server (step 6 in Figure 1), and later, to the client
(steps 7 and 8 in Figure 1) from the application server.

As opposed to current defense mechanisms, our approach does
not require disabling the HTTP redirection when fetching resources
from the Internet. This is because the helper server is isolated, and
therefore, even if it is redirected to an internal service, that service
remains unreachable.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Bahruz Jabiyev, Omid Mirzaei, Amin Kharraz, and Engin Kirda

4.2.3 Tracking Content Types. When the helper service fetches
resources for the web application, content type (e.g., text, image)
has equal importance as the content itself. Depending on the content
type, the way content is processed by the web application or the
way it is rendered by client browsers (if it is passed on further to
clients) might vary. Therefore, the helper service should also fetch
the content type information of the resource.

5 PROTOTYPE IMPLEMENTATION
In our implementation, we extend the functionality of a popular re-
verse proxy application to be able to read and write HTTP requests
sent by clients. Also, we deploy a server that has the ability to fetch
a resource from the Internet at a given URL and is configured to
have no access to internal services.

5.1 Extending Reverse Proxy
We choose NGINX [11] and extend it to support the operations of
searching and modifying requests. We also enable developers to
except pages and parameters from those operations.

5.1.1 Extending NGINX with Lua. NGINX is a high-performance
web server and reverse proxy. We add the "ngx_http_lua_module"
module [9] to NGINX. This module allows writing Lua code to ex-
tend the functionality of NGINX. Using this, we write an extension
to process incoming requests. We make our extension code publicly
available [10] to help other researchers benefit from this work. We
also share the HackerOne reports which were analyzed for this
paper.

5.1.2 Searching and Modifying. The extension code searches for a
URL pattern in the request body and URI. The pattern consists of a
sequence of characters beginning with a single colon and followed
by a double slash (i.e. "://"). Different versions of this pattern are
also searched, which we detail later in Section 6 when we discuss
defense evasion techniques. If the pattern is matched, it is assumed
that the matching text is a separator between a URL scheme and a
hostname, and thus, a URL is found. We refer to these characters
as "scheme separator" in the rest of this paper.

Once a URL is found, the extension code modifies it by prepend-
ing the address of the helper service. This prepending essentially
passes the URL value as an argument to the helper service so that
it can fetch the corresponding resource from the Internet (see the
body of the request in Step 2 of Figure 1).

5.1.3 Exclusions. Our prototype supports modification exclusions
both at the page and parameter levels. A page-based exclusion
excepts all requests sent to that page from modification. Similarly,
a parameter-based exclusion makes the value of that parameter
exempt.

We specify the list of pages and parameters to be excluded, in a
space-separated format, in an NGINX configuration file. This list
is used as a reference from within the extension code to enforce
necessary exceptions.

5.2 Deploying Helper Server
We use container technology to deploy a helper server in the in-
ternal network. Also, the helper service is started on the server to

fetch resources from the Internet. We use firewall rules to isolate
the helper server.

5.2.1 Server Image. We build a container image for the helper
server from a Dockerfile. This file uses the official Ubuntu image as
the base image. It also includes instructions for installing packages
needed to start the helper service and add firewall rules. We also
release this Dockerfile in the same repository [10].

5.2.2 Helper Service. The helper service is implemented with a
few lines of PHP code and it runs on an NGINX server. This code
takes a URL as an argument and makes an HTTP request to that
URL and returns the response. To keep track of content types, the
"Content-Type" header is used while fetching from the URL.

5.2.3 Firewall Rules. We rely on the UFW tool [2] to write and en-
able firewall rules on the helper server. Using UFW, access to private
network ranges (10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16),
including link-local addresses (169.254.0.0/16) is blocked. Ad-
ditionally, the loopback interface is disabled to prevent access to
localhost (i.e. 127.0.0.1). Access to the web application server
IP is explicitly allowed, while all TCP and UDP ports opened by
services are configured to be unreachable.

6 EVALUATION
The proposed SSRF defense solution aims at mitigating the impact
of SSRF attacks by automatically adjusting and sandboxing URLs
sent in requests. The solution relies on the ability of recognizing
URLs as a primary step. Therefore, we start this section with the
evaluation of our URL recognition module. We then present the
overall ability of our solution in protecting against SSRF attacks.
This is followed by a discussion on the effects of our solution on the
performance of web applications. We wrap up this section with the
discussion of methods attackers can leverage to evade our defense
and how they can be addressed.

6.1 Recognizing URLs
Not all web client libraries parse a given URL in the same way.
For example, some of the libraries might require the presence of
a scheme name (e.g., "http://") in a given URL, while others might
already assume it. This difference makes the accurate recognition
of URLs a challenging task. Therefore, we analyze several libraries
across various popular server-side languages and frameworks to
get insight into how they parse the given URLs, and we discuss
possible effects of parsing differences on our defense solution.

6.1.1 Collecting Libraries. To examine the parsing process, we
compile a list of popular web client libraries (see Table 1). For
each server-side programming language, there are usually multiple
standard and third-party web client libraries. Normally, standard
libraries offered by languages themselves are used most widely.
However, in some languages, a third-party library might have the
same popularity due to its ease of use and speed. In such cases, we
also add those libraries to our list.

6.1.2 False Negatives. To recognize URLs sent in HTTP requests,
we use the scheme separator pattern (i.e., "://"). If a server-side
library accepts URLs without a scheme, such URLs will pass un-
noticed. In that case, the defense solution will fail to prevent the

Preventing Server-Side Request Forgery Attacks SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

Library/Function Language URL Patterns
http://a.bc/ //a.bc/ a.bc/

HttpWebRequest C# ✓
HttpClient C# ✓
net/http Go ✓
java.net Java ✓
http JS (Node.js) ✓
request JS (Node.js) ✓
libwww-perl Perl ✓
file_get_contents() PHP ✓
cURL PHP ✓ ✓
urllib Python ✓
requests Python ✓
net/http Ruby ✓ ✓

Table 1: Most libraries require URLs to start with a scheme name.

attack. However, our analysis of web client libraries suggests that
accepting URLs without the scheme part is unusual. In fact, as Ta-
ble 1 shows, only the "cURL" library of PHP and built-in http client
library of Ruby accept URLs without a scheme name, while the rest
of them, require this part to be present in the URL.

If a web application relies on the "cURL" library of PHP or
"http/net" of Ruby to make HTTP requests, an attacker can eas-
ily bypass our protection by omitting the scheme part of URLs.
However, this issue can be easily fixed by adding a check in the
application code to fail URLs which do not start with a scheme
name.

6.1.3 False Positives. Confusing non-URL elements in a request
with URLs and modifying them might have unintended conse-
quences. We assume that the pattern we use (i.e., "://") is almost
unique to URLs. To verify this assumption, we do text analysis on
a hundred arbitrary README.md files from Github as they usually
have a good combination of technical and non-technical texts. We
observe that the scheme separator pattern exclusively belongs to
URLs, therefore, it can hardly be found in non-URL elements of a
request. As a result, non-URL elements will hardly be confused as
URLs.

6.2 Preventing Attacks
To demonstrate how our proposed defense solution prevents SSRF
attacks, we deploy it with web applications from OWASP Vulner-
able Web Applications Directory (VWAD) [38]. We evaluate how
effectively in-band and out-of-band SSRF attacks are prevented.

6.2.1 Compiling List of Applications. Not all applications listed in
the OWASP VWAD are vulnerable to SSRF attacks. Usually, known
vulnerabilities are listed for each application. Thus, we choose
those applications which have Server-Side Request Forgery (SSRF)
vulnerabilities. We also include applications with XXE (External
XML Entity) vulnerabilities in our list as XXE vulnerabilities usually
allow SSRF attacks.

Not all applications in the compiled list are suitable for our
experiments. Some of them are restrictive (i.e., do not allow attacks),
and there are few others we cannot install (e.g., the installation
interface does not work), and thus, cannot deploy. Applications
listed in Table 2 are those we could deploy successfully with our

ID Name
1 Vulnerable Java Web Application [5]
2 NodeGoat [14]
3 OWASP Juice Shop [12]
4 Magical Code Injection Rainbow [1]
5 Mutillidae [13]
6 Xtreme Vulnerable Web Application [6]

Table 2: Names and ID numbers of sample applications, are listed.

defense solution. We use ID numbers shown in the table to refer to
these applications in the remainder of this section.

These applications become vulnerable to SSRF attacks in differ-
ent ways. Application #3 accepts a URL to set the profile photo
of a user, while application #2 retrieves stock data from a user-
specified source. Application #6 receives an image URL from a user
to download and show it to the user. The rest process XML inputs
and become vulnerable.

For each application, we follow the same procedure to prepare it
for experiments.We first start each application on our local machine
and provide its address to our extended reverse proxy to route all
incoming HTTP traffic to that address. Simultaneously, we start
the helper server by running a container created from its image.

6.2.2 Preventing In-band Attacks. In-band attacks make up a much
larger portion of overall SSRF attacks. In fact, our analysis of 61
HackerOne vulnerability reports shows that the attack is in-band
in nine out of ten cases.

Experimental results show that the proposed solution can pre-
vent all in-band SSRF attacks. Only one of them requires minimal de-
veloper collaboration. This is because the web client library, Node.js
Needle, used by the application, accepts URLs without a scheme
name. The developer’s minimal assistance of adding a check to fail
URLs without a scheme name lets our defense solution be fully
effective. Attacks on the rest of the applications are successfully
prevented in an automated way.

This solution is independent of technologies used on a subject
system. In fact, as seen in Table 3, applications used in our experi-
ments use different languages and frameworks. Nevertheless, our
defense solution works with all of them.

Attack payloads are negated regardless of where they are placed
in the request. Current defense mechanisms usually assume that
developers know where an attack payload might reside in a request
(i.e., usually some POST or GET parameter). Therefore, they usually
fail when an attack payload is delivered in an unexpected part of a
request. Our defense solution automatically deals with all possible
places an attack payload might be inserted. In fact, as Table 3 shows,
attacks on selected applications have their payloads inserted in
three different ways: 1) as a parameter value, 2) within a value of a
parameter, and 3) within a request body (i.e., outside a parameter).

Thanks to the search pattern used by our defense solution, at-
tacks involving URLs with a non-http scheme (e.g., gopher, dict)
are also prevented although no example of such cases did exist in
our experiments. While some of these schemes can enable more
complicated attacks, they are supported by very few web client
libraries.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Bahruz Jabiyev, Omid Mirzaei, Amin Kharraz, and Engin Kirda

ID Technology Payload Place Automated Assisted
1 Java within body ✓
2 Node.js parameter ✓
3 Node.js parameter ✓
4 PHP within parameter ✓
5 PHP within parameter ✓
6 PHP parameter ✓

Table 3: While one application needs a minimal developer collabo-
ration, in all other applications all in-band attacks are prevented in
an automated manner.

6.2.3 Preventing Out-of-band Attacks. Our analysis of SSRF vul-
nerability reports suggests that only one out of ten SSRF attacks
are of this type. Our defense solution cannot prevent out-of-band
attacks in its current state as in this type of attack the payload is not
transferred between an attacker and a victim application. Instead,
the application retrieves it from an external location specified by
the attacker.

Nevertheless, we believe that our defense approach can also be
applied to out-of-band attacks by deploying a system in between
the application and the Internet to modify URLs contained in down-
loaded content. However, in this scenario, URLs will be much more
common, and therefore, various challenges might arise in ensuring
that the application works as before.

6.3 Affecting Application Performance
The proposed defense solution modifies some incoming requests
and uses a helper server to fetch resources for an application, and
thus, the functionality and speed of the application are both affected.

6.3.1 Affecting Functionality. As the solution modifies an incom-
ing request only when its URI or body contains a URL, the majority
of requests pass through the reverse proxy unchanged. As a result,
most of the application’s functionality remains unaffected. For ex-
ample, static files (e.g., CSS, JavaScript) are loaded in the same way
as before, and thus, nothing changes in the appearance.

Functionality effects come into play when a URL is sent in a
request. For instance, when a user submits a URL to upload her
profile photo, this HTTP request (sent after the "submit" button
is clicked) is modified and the photo is retrieved through a helper
server.

To see how the functionality of selected applications is affected
when they are deployed with our defense solution, we manually
test the pages of all applications against their expected output.

We observe different behavior only in two pages. One of them
does a client-side redirection based on a URL input. We solve this by
adding the name of that parameter to the list of excluded parameters.
The other refuses to download an image over SSL with the self-
signed SSL certificate installed on the helper server. This can be
fixed with a legitimate SSL certificate.

6.3.2 Affecting Speed. Our solution affects the speed of web appli-
cations, because it comes with two extra operations: 1) processing
requests for search and modification, and 2) fetching resources over
the helper server. The former applies to all requests coming to the
application, whereas the latter happens only when the application
needs to fetch a resource from a user-provided URL.

Figure 2: For each application, the average response time of the URL
submitting request is recorded both when the protection is enabled
and disabled.

To process HTTP requests, our prototype benefits from a module
that embeds the Lua Just-In-Time (LuaJIT) interpreter into NGINX
reverse proxy. Lua in itself has a good reputation for speed, and
LuaJIT makes it even faster [32]. In addition, our request processing
consists mainly of only two types of string searches (i.e., one in the
URI and another in the body).

Fetching resources through the helper server increases the Round-
Trip Time (RTT) of the request because the helper server is an
intermediate node between a web application server and the Inter-
net. However, since the helper server is deployed in the internal
network, only two more network hops (one going and another
coming back) are added. In addition, the helper server comes into
play only when the web application needs to fetch a resource from
the Internet.

To measure the extent of the slowdown, we use a tool called Burp
Suite [7]. The "Intruder" part of this tool allows running a request
many times automatically and provides the "Response completed"
time for each request. In fact, this is the amount of time taken for
the response to complete after the request is sent [16].

We specifically choose the request which involves URL submis-
sion from each application, because URL submitting requests face
more slowdown than others. To be more specific, URL submitting
requests are slowed down by the combination of both request pro-
cessing and fetching over the helper server, whereas other requests
are only affected by request processing overhead. Therefore, our
choice of URL submitting requests for speed measurements lets us
see the extent of the slowdown in the worst-case scenario.

Then, we run each (URL submitting) request 100 times with the
same parameters, both with the protection enabled and disabled. To
minimize the effects of outlying values, we calculate the 5% trimmed
mean (after sorting values, 5% lowest and 5% highest values are
trimmed and 90% remains to be used in the calculation).

The results given in Figure 2 show that our solution does not
significantly reduce the speed of applications. In fact, little increase
is observed in the response time in applications #1, #2, and #3. Inter-
estingly, for the rest of the applications (#4, #5, #6) the response time

Preventing Server-Side Request Forgery Attacks SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

has decreased when our protection is enabled. We speculate that
this happens because the helper server is dedicated to downloading
contents, whereas the web application server is much busier, and
therefore, might be a little slower to download data.

6.4 Potential Evasion
An important part of our defense solution is URL recognition that
is accomplished by pattern matching. Also, our approach can be
implemented in essentially two different ways: 1) on an intermedi-
ate node sitting between clients and an application, and 2) in the
application code. Therefore, in what follows, we first discuss how
our URL recognition system is affected by the broad category of
URL obfuscation, and then, we explain how evasion methods can
affect our defense system depending on the way it is implemented.

6.4.1 URL Obfuscation. URL obfuscation techniques have proven
to be effective in deceiving defense systems and users [40]. Attack-
ers might use URL shortening services to hide malicious URLs, or
they might abuse URL redirects on a legitimate website to take users
(or possibly systems) to malicious websites. The latter is also known
as an "Unvalidated Redirects and Forwards" vulnerability [19].

However, these techniques pose no threat to our defense solu-
tion since all URLs are adjusted without distinction, and as a result,
they are handled by the helper server. Therefore, even if manipu-
lated URLs are obfuscated, they cannot inflict any harm to internal
services on the target network.

6.4.2 Intermediate Deployment. When our defense solution is de-
ployed on an intermediate system between clients and the web
application server, it might be bypassed in multiple ways. We dis-
cuss three categories of such bypass methods.

The first category manipulates the process of URL encoding.
URL encoding is needed to avoid confusion in the interpretation
of requests by servers. In the context of an HTTP request, URL
encoding is used in two different ways: 1) a request URI is usually
URL-encoded, because it might contain a reserved character (e.g.
"/", "?") [43], and 2) when a form data is submitted, the default
encoding type is "application/x-www-form-urlencoded" and it uses
URL encoding to encode reserved characters [26]. Therefore, to
correctly interpret requests, servers usually decode a URI and form
data (if it is the default type) in HTTP requests they receive.

Attackers can take advantage of URL encoding to bypass the
search pattern (i.e., "://") our defense solution uses. For example,
when attackers create their payloads, they can use "http%3a%2f/"
instead of "http://", as they are treated the same by a server when
decoding happens. To avoid this complexity brought by URL encod-
ing, defenders can decode the incoming request before they start
searching for URLs in the request.

However, decoding incoming requests opens a door to double
encoding bypass methods. Attackers will encode the payload twice
to bypass the defense. In this case, the intermediate defense system
decodes only once and fails to notice the pattern, and the server
decodes one more time to process the payload. Therefore, in our
prototype, we do not decode incoming requests. Instead, we search
for all encoded combinations of the "://" pattern, even though it is
computationally more expensive.

The second category of bypass methods involves character en-
codings (e.g. utf-8, ibm037). Character encoding information is
usually sent in the "charset" parameter of the "Content-Type" re-
quest header to let the server know how bytes should be translated
into text [3, 4]. It has been shown that multiple encodings might be
supported by servers depending on the technologies used on the
server side [25]. Attackers can manipulate this to encode their pay-
loads in multiple ways and to evade pattern matching. Therefore,
in our prototype, we check the existence of the "charset" parameter
in requests and require it to be "utf-8" if it exists.

The final category is HTTP desynchronization attacks which in-
volves HTTP request smuggling. These attacks usually take advan-
tage of different interpretations of request headers by intermediate
and back-end systems. Attackers might use these attacks to bypass
our defense solution. They can craft malicious requests which are
totally missed by the intermediate system and hit the back-end sys-
tem [34]. These attacks can be prevented by a cooperation between
intermediate and back-end systems aiming to ensure that request
headers and their values are interpreted the same way.

6.4.3 Code-level Deployment. Our defense technique can also be
deployed as part of an application, at the code level. We are aware of
only one bypass method for this fashion of defense implementation.
This involves omitting the scheme part of URLs by attackers. If the
application accepts URLs without a scheme, the searching mecha-
nism would miss those URLs, and therefore, they pass unmodified
and might inflict harm if they are malicious. However, this issue
can easily be solved by minimal developer assistance where the
developer adds some code to refuse to open a connection to URLs
which do not contain a scheme.

As opposed to deployment on an intermediate system, code-level
deployment has the advantage of having access to the state of a
request as the application code sees it. This, in turn, allows the
defense technique to be more accurate and be safe from disguised
deliveries. Therefore, even though this type of deployment might
not bring the same speed benefits of intermediate deployment, it
leaves much less room for evasions.

7 RELATEDWORK
Our review of the academic literature suggests that no defense
solution has been proposed against SSRF attacks. To date, the SSRF
problem has not received much attention from the academic com-
munity. Several studies have been done to show the goals of these
attacks and their prevalence.

A study done by Pellegrino et al. [39] shows security implications
of server-side requests in general. They describe different attack
scenarios that can happen when a server-side request is abused. In
fact, they show that server-side requests can be exploited to evade
browser security mechanisms, to start denial-of-service attacks, to
carry out network reconnaissance and to send arbitrary data to
non-HTTP network services.

Some studies [33, 42] analyse XML parsers in regard to how
well they are protected against XML vulnerabilities (which can
eventually lead to SSRF attacks) with their default configurations.
Späth et al. [42] find that many XML libraries in different languages
(e.g., Java, Python, C#) are vulnerable to SSRF attacks by default.
In another study [33], they analyze XML parsing libraries which

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Bahruz Jabiyev, Omid Mirzaei, Amin Kharraz, and Engin Kirda

are widely used by projects on Github and Google Code. They find
that more than half of them have the XXE vulnerability when they
have a default configuration.

The Open ID Connect protocol which is used by single sign-on
systems has also been shown to allow SSRF attacks [30, 37]. Mainka
et al. [37] show that a service provider can be exposed to SSRF at-
tacks if the identity provider ismalicious. Not only service providers,
but identity providers are also shown to be vulnerable [30].

8 CONCLUSION
In this paper, we present an automated approach for defending
against SSRF attacks. We build a prototype for this approach to
evaluate its ability to prevent attacks. Furthermore, we examine
and report the effects of this solution on web applications. Our
experimental results suggest that SSRF attack payloads can be au-
tomatically negated without significant effects on the application
performance. In addition, they are negated regardless of where they
are inserted and delivered in a request. Therefore, this approach
can form a basis for defense systems that will be designed against
the growing threat of SSRF attacks.

9 ACKNOWLEDGEMENTS
We would like to thank anonymous reviewers for reading the paper
carefully and making helpful comments. This work was supported
by National Science Foundation under grant CNS-1703454.

REFERENCES
[1] 2016. TheMagical Code Injection Rainbow! https://github.com/SpiderLabs/MCIR.

Accessed: 2020-05-11.
[2] 2017. The UFW firewall configuration tool. https://help.ubuntu.com/community/

UFW. Accessed: 2020-06-10.
[3] 2019. Accept-Charset. https://developer.mozilla.org/en-US/docs/Web/HTTP/

Headers/Accept-Charset. Accessed: 2020-05-26.
[4] 2019. Character encoding. https://developer.mozilla.org/en-US/docs/Glossary/

character_encoding. Accessed: 2020-05-26.
[5] 2019. Vulnerable Java based Web Application. https://github.com/CSPF-Founder/

JavaVulnerableLab. Accessed: 2020-05-11.
[6] 2019. XVWA is a badly coded web application written in PHP/MySQL that helps

security enthusiasts to learn application security. https://github.com/s4n7h0/
xvwa. Accessed: 2020-05-11.

[7] 2020. The Burp Suite family. https://portswigger.net/burp. Accessed: 2020-06-10.
[8] 2020. Configuring the instance metadata service. https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html. Ac-
cessed: 2020-08-29.

[9] 2020. Embed the Power of Lua into NGINX HTTP servers. https://github.com/
openresty/lua-nginx-module. Accessed: 2020-05-08.

[10] 2020. Implementation Materials. https://github.com/bahruzjabiyev/prevent-ssrf/.
Accessed: 2020-12-16.

[11] 2020. The NGINX reverse proxy. https://www.nginx.com. Accessed: 2020-06-10.
[12] 2020. OWASP Juice Shop: Probably the most modern and sophisticated insecure

web application. https://github.com/bkimminich/juice-shop. Accessed: 2020-05-
11.

[13] 2020. OWASP Mutillidae II is a free, open source, deliberately vulnerable web-
application. https://github.com/webpwnized/mutillidae. Accessed: 2020-05-11.

[14] 2020. The OWASP NodeGoat project. https://github.com/OWASP/NodeGoat.
Accessed: 2020-05-11.

[15] 2020. Retrieving instance metadata. https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/instancedata-data-retrieval.html. Accessed: 2020-04-30.

[16] 2020. Running attacks. https://portswigger.net/burp/documentation/desktop/
tools/intruder/attacks. Accessed: 2020-05-25.

[17] 2020. Server Side Request Forgery. https://owasp.org/www-community/attacks/
Server_Side_Request_Forgery. Accessed: 2020-05-18.

[18] 2020. Storing and retrieving instance metadata. https://cloud.google.com/
compute/docs/storing-retrieving-metadata. Accessed: 2020-04-30.

[19] 2020. Unvalidated Redirects and Forwards Cheat Sheet. https:
//cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_
Forwards_Cheat_Sheet.html. Accessed: 2020-06-12.

[20] 2020. XML External Entity (XXE) Processing. https://owasp.org/
www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing. Ac-
cessed: 2020-05-19.

[21] Jobert Abma. 2017. Evaluating Ruby code by injecting Rescue job on the sys-
tem_hook_push queue throughweb hook. https://hackerone.com/reports/299473

[22] Peter Adkins. 2017. Pivoting from blind SSRF to RCE with
HashiCorp Consul. https://www.kernelpicnic.net/2017/05/29/
Pivoting-from-blind-SSRF-to-RCE-with-Hashicorp-Consul.html

[23] Andre Baptista. 2018. SSRF in Exchange leads to ROOT access in all instances.
https://hackerone.com/reports/341876

[24] Alex Chapman. 2019. GitLab::UrlBlocker validation bypass leading to full Server
Side Request Forgery. https://hackerone.com/reports/541169

[25] Soroush Dalili. 2017. Request encoding to bypass web application fire-
walls. https://www.nccgroup.com/uk/about-us/newsroom-and-events/blogs/
2017/august/request-encoding-to-bypass-web-application-firewalls/

[26] Ian Jacobs Dave Raggett, Arnaud Le Hors. 1999. HTML 4.01 Specification. https:
//www.w3.org/TR/html401/interact/forms.html

[27] Ed. 2017. SSRF vulnerability in gitlab.com via project import. https://hackerone.
com/reports/215105

[28] Elb. 2019. Bypass of the SSRF protection in Event Subscriptions parameter.
https://hackerone.com/reports/386292

[29] Eugene Farfel. 2016. SSRF in https://imgur.com/vidgif/url. https://hackerone.
com/reports/115748

[30] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2017. The Web SSO Standard
OpenID Connect: In-depth Formal Security Analysis and Security Guidelines. In
2017 IEEE 30th Computer Security Foundations Symposium (CSF). 189–202.

[31] floyd. 2017. SVG Server Side Request Forgery (SSRF). https://hackerone.com/
reports/223203

[32] Michael Gogins. 2013. Writing Csound Opcodes in Lua. In Ways Ahead: Proceed-
ings of the First International Csound Conference. Cambridge Scholars Publishing,
32.

[33] Sadeeq Jan, Cu D. Nguyen, and Lionel Briand. 2015. Known XML Vulnerabilities
Are Still a Threat to Popular Parsers and Open Source Systems. In 2015 IEEE Inter-
national Conference on Software Quality, Reliability and Security. IEEE, Vancouver,
BC.

[34] James Kettle. 2019. HTTP Desync Attacks: Request Smuggling Reborn. https:
//portswigger.net/research/http-desync-attacks-request-smuggling-reborn

[35] Brian Krebs. 2019. Capital One Data Theft Impacts 106M People. https://
krebsonsecurity.com/2019/08/what-we-can-learn-from-the-capital-one-hack/

[36] Corben Leo. 2018. Sending Emails from DNSDumpster - Server-Side Request
Forgery to Internal SMTP Access. https://hackerone.com/reports/392859

[37] Christian Mainka, Vladislav Mladenov, Jörg Schwenk, and Tobias Wich. 2017.
SoK: Single Sign-On Security — An Evaluation of OpenID Connect. In 2017 IEEE
European Symposium on Security and Privacy (EuroS P). 251–266.

[38] OWASP. 2020. OWASP Vulnerable Web Applications Directory. https://owasp.
org/www-project-vulnerable-web-applications-directory/

[39] Giancarlo Pellegrino, Onur Catakoglu, Davide Balzarotti, and Christian Rossow.
2016. Uses and Abuses of Server-Side Requests. In Proceedings of the 19th Inter-
national Symposium on Research in Attacks, Intrusions and Defenses.

[40] Raymond Pompon. 2017. URL Obfuscation—Still a Phisher’s
Phriend. https://www.f5.com/labs/articles/threat-intelligence/
url-obfuscationstill-a-phishers-phriend

[41] Slim Shady. 2016. SSRF and local file read in video to gif converter. https:
//hackerone.com/reports/115857

[42] Christopher Späth, Christian Mainka, Vladislav Mladenov, and Jörg Schwenk.
2016. SoK: XML Parser Vulnerabilities. In 10th USENIX Workshop on Offensive
Technologies (WOOT 16). USENIX Association, Austin, TX. https://www.usenix.
org/conference/woot16/workshop-program/presentation/spath

[43] L. Masinter T. Berners-Lee, R. Fielding. 2005. Uniform Resource Identifier (URI):
Generic Syntax. https://tools.ietf.org/html/rfc3986

[44] Cheng-Da Tsai. 2017. How I Chained 4 vulnerabilities on GitHub Enter-
prise, From SSRF Execution Chain to RCE! http://blog.orange.tw/2017/07/
how-i-chained-4-vulnerabilities-on.html

[45] ylujion. 2016. Blind SSRF on synthetics.newrelic.com. https://hackerone.com/
reports/141304

https://github.com/SpiderLabs/MCIR
https://help.ubuntu.com/community/UFW
https://help.ubuntu.com/community/UFW
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Charset
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Charset
https://developer.mozilla.org/en-US/docs/Glossary/character_encoding
https://developer.mozilla.org/en-US/docs/Glossary/character_encoding
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/s4n7h0/xvwa
https://github.com/s4n7h0/xvwa
https://portswigger.net/burp
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://github.com/openresty/lua-nginx-module
https://github.com/openresty/lua-nginx-module
https://github.com/bahruzjabiyev/prevent-ssrf/
https://www.nginx.com
https://github.com/bkimminich/juice-shop
https://github.com/webpwnized/mutillidae
https://github.com/OWASP/NodeGoat
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
https://portswigger.net/burp/documentation/desktop/tools/intruder/attacks
https://portswigger.net/burp/documentation/desktop/tools/intruder/attacks
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery
https://cloud.google.com/compute/docs/storing-retrieving-metadata
https://cloud.google.com/compute/docs/storing-retrieving-metadata
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing
https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing
https://hackerone.com/reports/299473
https://www.kernelpicnic.net/2017/05/29/Pivoting-from-blind-SSRF-to-RCE-with-Hashicorp-Consul.html
https://www.kernelpicnic.net/2017/05/29/Pivoting-from-blind-SSRF-to-RCE-with-Hashicorp-Consul.html
https://hackerone.com/reports/341876
https://hackerone.com/reports/541169
https://www.nccgroup.com/uk/about-us/newsroom-and-events/blogs/2017/august/request-encoding-to-bypass-web-application-firewalls/
https://www.nccgroup.com/uk/about-us/newsroom-and-events/blogs/2017/august/request-encoding-to-bypass-web-application-firewalls/
https://www.w3.org/TR/html401/interact/forms.html
https://www.w3.org/TR/html401/interact/forms.html
https://hackerone.com/reports/215105
https://hackerone.com/reports/215105
https://hackerone.com/reports/386292
https://hackerone.com/reports/115748
https://hackerone.com/reports/115748
https://hackerone.com/reports/223203
https://hackerone.com/reports/223203
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://krebsonsecurity.com/2019/08/what-we-can-learn-from-the-capital-one-hack/
https://krebsonsecurity.com/2019/08/what-we-can-learn-from-the-capital-one-hack/
https://hackerone.com/reports/392859
https://owasp.org/www-project-vulnerable-web-applications-directory/
https://owasp.org/www-project-vulnerable-web-applications-directory/
https://www.f5.com/labs/articles/threat-intelligence/url-obfuscationstill-a-phishers-phriend
https://www.f5.com/labs/articles/threat-intelligence/url-obfuscationstill-a-phishers-phriend
https://hackerone.com/reports/115857
https://hackerone.com/reports/115857
https://www.usenix.org/conference/woot16/workshop-program/presentation/spath
https://www.usenix.org/conference/woot16/workshop-program/presentation/spath
https://tools.ietf.org/html/rfc3986
http://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html
http://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html
https://hackerone.com/reports/141304
https://hackerone.com/reports/141304

	Abstract
	1 Introduction
	2 background
	2.1 Types of SSRF Attacks
	2.2 Consequences of SSRF attacks

	3 Existing Defense Mechanisms
	3.1 Common Flaws and Bypasses
	3.2 Fundamental Pillars of Defense Mechanisms
	3.3 Important Limitations

	4 Proposed Approach
	4.1 Request Modification
	4.2 Resource Fetching

	5 Prototype Implementation
	5.1 Extending Reverse Proxy
	5.2 Deploying Helper Server

	6 Evaluation
	6.1 Recognizing URLs
	6.2 Preventing Attacks
	6.3 Affecting Application Performance
	6.4 Potential Evasion

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

